Умножение и деление трехзначных чисел. Методическая разработка. Умножение и деление в столбик: примеры Деление числа на классы

Умножение и деление трехзначных чисел. Методическая разработка. Умножение и деление в столбик: примеры Деление числа на классы

Приемы устных вычислений с трехзначными и многозначны­ми числами касаются действий умножения и деления с числами, оканчивающимися нулями.

Прием вычислений для случаев вида 200 3; 800: 4; 800: 200

В этом случае целые сотни (или тысячи в примерах вида 4 000 3) рассматриваются как разрядные единицы, что позволяет свести эти случаи к табличному умножению и делению:

200х3 800:4 800:400

2 сот. х3 = 6 сот. 8 сот.: 4 = 2 сот. 8 сот.: 4 сот. = 2

200 3 = 600 800: 4 - 200 800: 400 = 2

70 6; 320: 8; 4 800:800

В этом случае целые десятки (или сотни) также рассматриваются как разрядные единицы, что позволяет свести эти случаи либо к таб­личному умножению и делению, либо применять к ним приемы уст­ного внетабличного умножения и деления в пределах 100.

Например:

70-6 320: 8 4 800: 800

7 дес. 6 = 42 дес. 32 дес.: 8 = 4 дес. 48 сот.: 8 сот. = 6 70 6 - 420 320: 8 - 40 4 800: 800 - 6

При хорошем владении разрядным и десятичным составом чисел дети без труда осваивают эти приемы самостоятельно. Для подведения ребенка к осознанию смысла этих приемов можно ис­пользовать примеры - помощники:

Например:

Вычисли: 4х7 40х70 140:2

40х7 14:2 140:20

Прием вычисления для случаев вида

840:2; 560: 4; 303 Х2; 180х4

8 подобных случаях необходимо использовать как знание де­сятичного состава чисел, так и приемы устного внетабличного ум­ножения и деления в пределах 100.

Например:

Приемы умножения и деления на разрядную единицу

(умножения и деления на 10, 100, 1 000)

Умножение на разрядную единицу переводит число в следую­щие разряды. Технически такое умножение добавляет нули спра­ва в запись числа, что увеличивает количество содержащихся в нем разрядов на количество добавленных нулей.

Например:

65-10 = 650 43-100 = 4300 75 1 000 - 75 000

Делить на 10, 100, 1 000 в области натуральных чисел можно только числа, содержащие соответствующее количество младших разрядов, не имеющих значащих цифр. Технически при этом как бы убирают соответствующее количество нулей справа, начиная с последнего.

Например:

650:10 = 65 8600:100 = 86 71 000:1 000 = 71

4500:Ш = 450 123000: Щ= 1 230

Во всех остальных случаях деления на разрядную единицу в об­ласти натуральных чисел будет получаться деление с остатком.

Например:

642:10 - 64 (ост. 2) 5 140: 100 = 51 (ост. 40)

Письменное умножение и деление

1. Умножение в столбик.

2. Деление в столбик.

1. Умножение в столбик

Используемые математические законы и правила

Вычисления произведения многозначного числа на однозначное или многозначного числа на многозначное требует применения письменных приемов вычислений (письменного алгоритма). Этот алгоритм построен на основе законов сложения и умножения на­туральных чисел.

Правило умножения суммы на число:

(а + Ь+с)-а-а-а + Ь-Л + с-Л

При умножении суммы на число можно умножить на это число каждое слагаемое и полученные резуль­таты сложить.

В качестве суммы рассматривается трехзначное (многозначное) число, представляемое в виде суммы разрядных слагаемых. Ум­ножение таким образом представленного многозначного числа на однозначное выполняется в соответствии с правилом умножения суммы на число.

Например:

125х3 = (100+ 20+ 5) -3 = 100х3 + 20 х3 + 5х3 = 300 + 60+ 15 = 375

Переводя данный способ умножения в запись «столбиком», получа­ем письменный прием (алгоритм) умножения на однозначное число.

Правило умножения числа на сумму:

ах (Ъ + с + р) = ахЬ + ахс + ахр

При умножении числа на сумму можно умножить это число на каждое слагаемое и полученные резуль­таты сложить.

Это правило является основой приема умножения многозначного числа на многозначное. Первый множитель - это число, умножаемое на сумму. В качестве суммы в этом случае рассматривается второй множитель, представляемый в виде разрядной суммы. Умножение многозначного числа на многозначное выполняется в соответствии с правилом умножения числа на сумму.

Например:

123 212 = 123 (200 + 10 + 2) - 123 200 + 123 10 + 123 2 -= 24 600 + 1 230 + 246 - 26 076

Переводя данный способ умножения в запись «столбиком», получа­ем письменный прием (алгоритм) умножения на многозначное число.

Приемы вычислений

Письменное умножение на однозначное число

Записать умножение столбиком можно подробно. Например:

Но обычно используется краткая запись, поскольку главным достоинством письменных приемов умножения является краткость записи вычислений:

Сложность состоит в том, что достоинства этого приема на пер­вых порах составляют главную проблему его усвоения, поскольку все опущенные в короткой записи промежуточные вычисления необхо­димо выполнять в уме (устно), запоминая при этом промежуточные результаты (сколько и каких единиц нужно прибавить к следующе­му разряду).

Учебник математики для 3 класса содержит подробное описа­ние процесса умножения «в столбик», пошагово оговаривающее каждое умственное действие по выполнению умножения и сложе­ния получаемых отдельных сумм:

1. Умножаю единицы: 7 8 = 56, 56 это 5 дес. и 6 ед.

2. 6 ед. пишу под единицами, а 5 дес. запоминаю и прибавляю их к десяткам после умножения десятков.

3. Умножаю десятки: 2 дес. 8 = 16 дес. К 16 дес. прибавляю 5 дес., которые были получены при умножении единиц:

16 дес. + 5 дес. = 21 дес. - это 2 сот. и 1 дес. Пишу 1 дес. под десятками, а 2 сот. запоминаю и прибавляю их к сотням после ум­ножения сотен.

4. Умножаю сотни: 3 сот. 8 = 24 сот. К 24 сот. прибавляю 2 сот., которые были получены при умножении десятков.

24 сот. + 2 сот. = 26 сот. - это 2 тыс. и 6 сот. Пишу 6 сот. под сотнями, 2 тыс. под тысячами. Читаю ответ: 2616.

Для прочного усвоения письменных приемов умножения ребе­нок должен:

1. Запомнить правильную запись: разряд записывается под со­ответствующим разрядом.

2. Запомнить правильный порядок выполнения действия: ум­ножение начинаем с младших разрядов (справа налево).

3. Овладеть технологией запоминания и добавления излишних разрядных единиц, получаемых при умножении однозначных чисел, в следующий по старшинству разряд.

Для облегчения (на первых уроках) письменного приема умно­жения можно:

1) производить подробную, а не сокращенную запись приема. В этом случае выполнять сложение можно по записям неполных произведений, а не в уме, запоминая излишние разрядные едини­цы (использование этого приема рекомендуется для детей, плохо считающих в уме);

2) производить запись промежуточных вычислений рядом с примером или на черновике - в этом случае все необходимые для запоминания и добавочного прибавления разрядные единицы будут зафиксированы, и ребенок не будет их «терять».

Такая запись часто кажется человеку, владеющему алгоритмом письменного умножения, излишней, слишком подробной. Даже учителя редко пользуются указанными приемами помощи ребен­ку. Однако следует обратить внимание на то, что взрослый чело­век (особенно тот, кто учился в «докалькуляторную эпоху») имеет очень большую практику употребления этого алгоритма и, естест­венно, он уже, как говорят педагоги, автоматизировался, т. е. взрос­лый человек часто не задумывается над процессом его примене­ния. Ребенку, который только начинает этому учиться намного труднее, особенно, если он при этом не очень тверд в таблице ум­ножения и сложении двузначных чисел в уме.

Письменное умножение на двузначное (и многозначное) число

опирается на правило умножения числа на сумму. Прием письмен­ного умножения на двузначное число можно записать подробно:

329 24 = 329 (20 + 4) - 329 20 + 329 4 - 6580 + 1316 - 7896 или кратко (в столбик):

Число 1316 называют первым неполным произведением, число 6580 называют вторым неполным произведением. Последний нуль (в разряде единиц) в записи числа 6580 при вычислениях в стол­бик опускают, лишь подразумевая его, для скорости записи. При этом цифру 8 (количество десятков) записывают в разряде десят­ков (таким образом, второе неполное произведение записывается со сдвигом влево на одну позицию).

Аналогично производится вычисление и запись умножения на трехзначное число:

В этом случае имеем три неполных произведения:

382 700 = 267 400 - результат умножения числа 382 на число единиц;

382 20 =7 640 - результат умножения числа 382 на число де­сятков;

382 -9 = 3 438 - результат умножения числа 382 на число сотен.

Результат умножения 382 729 дает сумма этих неполных про­изведений.

Записи последних нулей в неполных произведениях при вычис­лениях в столбик опускаются для экономичности записи, однако они подразумеваются, что показано сдвигом влево на один разряд каждого следующего неполного произведения.

Технически, несмотря на экономичный способ записи, выпол­нение умножения многозначного числа на двузначное или трех­значное число - процесс сложный и трудоемкий, требующий не только знания способов записи и порядка выполнения действий при письменных вычислениях, но и прочного знания таблицы ум­ножения (до автоматизма), а также умения производить сложение двузначных и однозначных чисел в уме.

Особые случаи

В качестве особых случаев рассматривают случаи умножения целых чисел (чисел с нулями) вида: 35 20; 532 300; 2540 400.

В основе умножения в этих случаях лежит правило умножения числа на произведение (сочетательное свойство умножения): а (Ъ с) = (а Ь) с = (а с) Ь.

Например:

35 20 - 35 (2 10) - (35 2) 10 - 70 10 - 700

2540-400 = 2540-(4-100) = (2540-4)-100= 10160-100 = 1016000

Письменное умножение чисел с нулями рассматривается от­дельно в связи с тем, что при записи таких вычислений в столбик происходит нарушение общего правила записи чисел при письмен­ном умножении.

Записывают такие случаи следующим образом:

При этом уже не соблюдается установка: «записываем разряд под соответствующим разрядом». Записывают одну под другой значащие цифры множителей. Например, в последнем случае значащая цифра 4"(число сотен) второго множителя записывается под значащей цифрой 4 (число десятков) первого множителя. Далее умножение производится по принципу «многозначное число ум­ножаем на однозначное», а результат помножается в уме на количе­ство десятков и сотен в множителях. Технически это выглядит как дописывание к результату справа такого же количества нулей, как в обоих множителях.

Сложные случаи письменного умножения

К сложным случаям письменного умножения относят все случаи вычислений, в которых происходит либо нарушение способа запи­си (для краткости вычислений), либо нарушение порядка выпол­нения алгоритма.

В общем случае при записи умножения в столбик следует запи­сывать разряд под соответствующим разрядом, а вычисления начинать с умножения первого множителя на единицы младшего разряда (разряда единиц), далее умножают первый множитель на число десятков второго множителя, далее - на число сотен и т. д. Таким образом находят неполные произведения, которые затем складывают, получая результат умножения.

В сложных случаях может происходить нарушение формы записи.

В первых трех случаях нарушение формы записи можно объяс­нить наличием нулей (незначащих цифр) в множителях, что по­зволяет на первом вычислительном этапе мысленно опускать их, помножая затем результат на нужное количество десятков.

В четвертом случае происходит нарушение порядка выполнения действий - после умножения первого множителя на число единиц второго множителя, сразу переходим к умножению первого множи­теля на число сотен, поскольку число десятков второго множителя обозначено цифрой 0. Подразумевается, что умножение первого мно­жителя на 0 десятков дает нулевой результат во втором неполном произведении. Поэтому для экономичности записи его опускают, под­разумевая его «по умолчанию». В связи с этим при умножении первого множителя на число сотен второе (фактически - третье) неполное произведение записывают со сдвигом влево на два разряда, посколь­ку первая справа значащая цифра этого неполного произведения бу­дет цифрой сотен, поэтому ее следует записать в разряд сотен.

Для того чтобы ребенок понял смысл всех этих многочисленных действий «по умолчанию», при знакомстве с этими трудными случаями следует сначала производить полные записи и выполнять все, пред­писанные алгоритмом действия, а не просто указывать ребенку, что куда следует «сдвигать». Затем, сравнивая два вида записи (полный и сокращенный) нужно помочь ребенку понять, какие элементы и этапы полного алгоритма и полной записи можно опустить, и что при этом произойдет с формой записи. В этом случае ребенок будет вы­полнять трансформации формы записи и порядка выполнения дей­ствий при письменном умножении осознанно, что способствует по­ниманию вычислительного приема и формированию осознанной вычислительной деятельности школьника.

Если вы хотите в уме научиться умножать и делить круглые трёхзначные числа, тогда вам повезло, ведь именно на этом уроке вы сможете это сделать. Если вы не знаете или знаете, но плохо, как умножать и делить круглые трёхзначные числа, тогда этот урок разработан специально для вас. Как здорово уметь быстро считать, делать вычисления на умножение и деления! Пока все думают, вы уже будете знать ответ.

На этом уроке мы рассмотрим два основных приёма: представления числа в качестве суммы разрядных слагаемых и представление числа в виде сотен или десятков. Также вспомним, как решаются примеры способом проверки. Вы точно проведёте время с пользой. Вперёд к успеху и знаниям!

И оценка, и почет -

Всем, кто любит устный счет!

Отточи свои уменья

В умноженье и деленье!

Способ нужный выбирай -

Быстро, весело считай!

Умножение и деление круглого трёхзначного числа на однозначное число легко заменить сотнями и десятками.

Решение : 1. Заменим число 180 десятками:

2. Во втором примере заменяем число 900 сотнями:

Познакомимся с другим приёмом устных вычислений и решим примеры. Вспомним правило умножения суммы на число.

При умножении суммы на число необходимо каждое слагаемое умножить на это число, а полученные произведения сложить.

Вспомним правило деления суммы на число.

При делении суммы на число необходимо каждое слагаемое разделить на это число, а полученные частные сложить.

Решение : 1. Раскладываем число 240 на составляющие и проводим вычисления:

2. Заменим первый множитель во втором примере суммой разрядных слагаемых и найдём произведение:

3. Проделаем тот же приём, только для нахождения частного:

4. Повторим операцию на последнем примере, только здесь заменим делимое не разрядными слагаемыми, а удобными слагаемыми:

Можно воспользоваться и другим методом умножения и деления трёхзначных чисел на однозначное число.

Решение : 1. Если мы делитель умножим на три, получим делимое девяносто.

2.Возьмем двести четыре раза и получим восемьсот - делимое, следовательно, подбор осуществлён правильно.

.

Если не получается подобрать правильный ответ с первого раза, необходимо продолжать подбирать числа до полного соответствия результатов.

Реши примеры на рисунке 1.

Рис. 1. Примеры

Решение : 1. В первом и во втором примерах заменим первые числа сотнями:

2. В третьем и четвёртом примерах воспользуемся приёмом разложения на разрядные слагаемые:

3. В последней паре примеров используем для решения метод подбора:

, проверка

Заостровье

2014г.

Аннотация

Конспект урока в сопровождении презентации по теме Умножение и деление трёхзначных чисел (Урок переноса существующих знаний на новый числовой концентр) для 3 класса по системе школа 2100. Занимательный подбор материала, разнообразные формы работы повышают интерес учащихся к изучаемому материалу.. Урок разработан в рамках ФГОС.

Оборудование: презентация, карточки с примерами А и Б на умножение и деление трёхзначных чисел, тест на карточке, учебник, (часть2).

Урок 87 (§ 2.32).

Тема: Умножение и деление трёхзначных чисел (Урок переноса существующих знаний на новый числовой концентр)

Цели: познакомить с алгоритмами устных приемов умножения и деления трехзначных чисел, аналогичных таким же приемам при умножении и делении двузначных чисел

Задачи:

Образовательные:

Познакомиться с алгоритмами устных приёмов умножения и деления трёхзначных чисел, аналогичных таким же приёмам при умножении и делении двузначных чисел.

Решать на новом числовом концентре текстовые задачи изученного вида.

Решать неравенства путём подбора значений переменной.

Систематически повторять и закреплять ранее изученное.

Развивающие: развивать навык устного счёта, совершенствовать мыслительные операции, умение аргументировать свое мнение, математические способности.

Воспитательные: воспитывать интерес к предмету, любознательность, самостоятельность, аккуратность, умение слушать учителя и своих товарищей.

Формировать УУД:

Личностные УУД: Самостоятельно определять и высказывать самые простые общие для всех людей правила поведения при общении и сотрудничестве. В самостоятельно созданных ситуациях общения и сотрудничества, опираясь на общие для всех простые правила поведения, делать выбор, какой поступок совершить.

Регулятивные УУД: самостоятельно формулировать цели урока после предварительного обсуждения. Учиться совместно с учителем обнаруживать и формулировать учебную проблему. Составлять план решения проблемы совместно с учителем. Работая по плану, сверять свои действия с целью и, при необходимости, исправлять ошибки с помощью учителя. В диалоге с учителем учиться вырабатывать критерии оценки и определять степень успешности выполнения своей работы и работы всех, исходя из имеющихся критериев.

Коммуникативные УУД: Донести свою позицию до других: высказывать свою точку зрения и пытаться её обосновать, приводя аргументы. Слушать других, пытаться принимать другую точку зрения, быть готовым изменить свою точку зрения.

Познавательные УУД: Самостоятельно предполагать, какая информация нужна для решения учебной задачи. Решать задачи по аналогии.

Символы:

Тип урока : введения нового знания

Методы обучения : наглядный, словесный, проблемно-поисковый.

– Что вам нужно было сделать в задании?

– Удалось ли правильно решить поставленные задачи?

– Вы сделали всё правильно или были ошибки, недочёты?

– Вы решили всё сами или с чьей-то помощью?

Какого уровня сложности было задание?

Есть ли у ребят какие-либо дополнения, замечания? Согласны ли вы с такой самооценкой?

Вывод? Ученики: закрепляли умение решать текстовую задачу, в которой повторили умножение и деление, порядок действий, учились составлять и решать выражения и т. д.

Тест.

Молодцы! Вот мы и заканчиваем наше путешествие. Чтобы нам вернуться обратно попробуйте решить тест в группах. Если вы выполните правильно, у вас должно получиться слово. Но сначала вспомним правила работы в группах. Выполняйте.

1.Как можно представить в виде произведения двух

множителей число 24 ?

а) 8 * 2 б) 7 * 3 м) 8 * 3 г) 3 * 6

2.Какое число делится на 6 ?

а) 46 о) 42 в) 28

3.Какое число нужно подставить, чтобы равенство было

63 * = 9 л) 7 б) 6 в) 8

4.Частное каких чисел равно 4 ?

а) 36 и 6 о) 24 и 6 в) 2 и 2

5.Найди числа произведение которых равно 12 ?

а) 6 и 3 б) 2 и 7 в) 3 и 5 д) 6 и 2 е) 4 и 3

6.На сколько надо разделить 48, чтобы получить 6 ?

ц) на 8 б) на 7 в) на 6

7. На верхней полке было 18 книг, а на нижней – в 3 раза меньше, чем на верхней. Сколько книг было на нижней полке?

а) 9 книг ы) 6 книг в) 3 книги

4 – работая по плану, сверять

свои действия с целью и, при необходимости, исправлять ошибки с помощью класса;

5 – в диалоге с учителем и другими учащимися учиться вырабатывать критерии оценки и определять степень успешности выполнения своей работы и работы всех, исходя из имеющихся критериев.

Коммуникативные УУД

Развиваем умения:

1.- доносить свою позицию до других: оформлять свои мысли в устной и письменной речи (выражение решения учебной задачи в общепринятых формах) с учётом своих учебных речевых ситуаций;

ТОУУ

2 – доносить свою позицию до других: высказывать свою точку зрения и пытаться её обосновать, приводя аргументы;

3 – слушать других, пытаться принимать другую точку зре-ния, быть готовым изменить

вопросы к тексту и искать ответы; проверять себя;

отделять новое от известного;

выделять главное; составлять план;

5 – договариваться с людьми: выполняя различные роли в группе, сотрудничать в совместном решении проблемы (задачи).

Личностные результаты:

1 – придерживаться этических норм общения и сотрудничества при совместной работе над учебной задачей;

Целевая аудитория: для 3 класса.

Класс: 3

Урок 87 (§ 2.32). Тема: Умножение и деление трехзначных чисел.

Цели урока: Добиться усвоения и применения алгоритма устных приёмов умножения и деления трёхзначных чисел, аналогичных таким же приёмам при умножении и делении двузначных чисел;

Задачи:

  1. Формировать умение решать на новом числовом концентре текстовые задачи изученного вида: находить частное и произведение трёхзначных чисел, запись которых оканчивается нулями.
  2. Способствовать формированию у учащихся осознанность в учебной деятельности, способности к самообразованию; развивать умение решать жизненные задачи средствами предмета «математика». Развивать логического мышления, умения формулировать учебную задачу, анализировать, сравнивать, рассуждать, делать выводы, находить и исправлять собственные ошибки. строить высказывания, продолжить учиться называть цели конкретного задания, алгоритм (план работы), проверять, исправлять и оценивать результаты своей работы.
  3. Воспитывать умение отстаивать собственную точку зрения и принимать мнения других людей (сотрудничать).

Тип урока: открытие нового знания.

Технология деятельностного метода.

Метод: проблемно-диалогический.

Оборудование : компьютер, проектор, презентация, таблица самоанализа, раздаточный материал.

Самоанализ

Это первый урок по теме «Деление и умножение трехзначных чисел», урок открытия новых знаний.

Урок построен в соответствии с программными требованиями, проведен в классе с наполняемостью 20 ученика, дети имеют разный уровень развития, 5 учеников в классе – слабоуспевающие, 1 ученик одаренный – именно по предмету математика, а число средних учеников преобладает над сильными. Поэтому особенности класса были учтены при планировании урока, заготовлены заранее индивидуальные карточки для слабых и сильных учеников.

Развивающие и воспитательные задачи решались в единстве с образовательной. Была поставлена триединая цель к уроку:

Основные цели

  1. развивать интеллектуальные умения: формировать мыслительные операции классификации, анализа и синтеза на основе решения предлагаемых задач,
  2. развивать коммуникативные умения: самостоятельно находить необходимую информацию в тексте учебника,
  3. развивать организационные умения: самостоятельно оценивать результат своих действий, контролировать и исправлять ошибки.

Мотивация учащихся стимулировалась нетрадиционной формой урока.На уроке осуществляется межпредметная связь с окружающим миром, что позволяет разнообразить методы и приемы работы, повысить мотивацию учащихся, обеспечить радость познания в условиях сотрудничества. На уроке использована информационно-коммуникационная технология обучения. Обучение происходит на основе активного взаимодействия всех участников учебного процесса с привлечением современных средств (источников) информации – компьютера.

Урок состоит из трех основных этапов:

I этап – организационный; цель его – ориентировка в теме предстоящего урока, актуализация прежних знаний по теме, создание мотивации и совместное целеполагание для планирования предстоящей деятельности.

II этап – основной, закрепление полученных ранее знаний. Использована групповая работа, работа в парах. Ученики применяли свои знания в различных ситуациях: в самостоятельной работе, в решении задачи.

III этап – завершающая стадия,Кроме занятий по математике была осуществлена метапредметная связь, говорили с о нашем общем доме – планете Земля.Сделан вывод, что человек неотделим от природы, он учится у природы. И он должен уважать законы природы, и только в содружестве с ней люди могут быть счастливы

Ход урока

I. Организационный момент.

1. Орг. момент. Мотивация к деятельности

– Здравствуйте, ребята. Поздоровайтесь с нашими гостями. Садитесь.

– Я улыбнусь вам, а вы улыбнитесь друг другу и подумайте, как хорошо, что мы сегодня все вместе. Приложение 1 Слайд 2

– Мы спокойны, добры, приветливы, ласковы. Мы все здоровы.

– Глубоко вдохните и выдохните. Выдохните вчерашнюю обиду, злость, беспокойство.

– Вдохните в себя свежесть морозного утра, теплоту солнечных лучей, красоту окружающего мира.

– Я желаю вам хорошего настроения и бережного отношения друг к другу. Я уверена, что у нас всё получится.

Сегодня наш урок мне хочется начать словами английского философа Роджера Бэкона о математике: "Тот, кто не знает математики, не может изучить другие науки и не может познать мир." Слайд 3

Я думаю, что на уроке мы непременно найдём подтверждение словам этого философа"

А девизом урока будет: Смело иди вперед. не стой на месте.

Чего не сделает один, сделаем вместе. Слайд 4

– Откройте тетради. Запишите число, классная работа.

Проверка правильного положения тела и тетради при письме.

II . Актуализация знаний .

1. Индивидуальная работа по карточкам: / 2 учеников работают у доски /

А) 64:х=16
567+388=
608-439=

Б) 25* х = 75
678+252=
680 – 391 =

2. Фронтальная работа

Работа в группах: Слайд 5

а) кг дм 2 час см сут дм 3 м 2 ц м л мин

Назовите:

  • единицы измерения расстояния – 1 группа
  • единицы измерения времени – 2 группа,
  • единицы измерения массы – 3 группа.
  • единицы измерения площади – 4 группа.
  • единицы измерения объёма – 5 группа.

б) Выразите: Слайд 6–7

  • 2 сут 5 ч = … час
  • 74 ч = …сут … ч
  • 125 сек= ..мин…сек
  • 2/9 = 4 л
  • 3/5 дм = …см
  • 2 дм 3 =…..см 3
  • 4 ц 25 кг =…кг
  • 2 м 4 см = …см
  • 3 м 2 = …. дм 2
  • 4 л = …. дм 3

в ) – Какое слова зашифровано Слайд 8-15

– Выполните вычисления.

  • Число 165 увеличили на 6;
  • 135 уменьшить на 6;
  • 2 увеличить в 6 раз;
  • 60 уменьшить в 6 раз;
  • Первое слагаемое 348, второе слагаемое 6, найдите значение суммы;
  • найдите значение разности чисел 300 и 6;
  • уменьшаемое 150,вычитаемое 6; найдите значение разности
  • делимое 90, делитель 6, найдите значение частного.

– Расставьте значения выражений в порядке возрастания. Слайд 16

К каждому значению подберите соответствующую букву. Прочитайте слово.

– ЭКОЛОГИЯ – как вы понимаете значение этого слова? Слайд 17

Посмотрите вокруг: какой удивительный мир нас окружает – лес, небо, солнце, птицы. Это природа! Наша жизнь не отделима от неё. Природа кормит, поит, одевает нас. Она щедра и бескорыстна. Слайд 18

Человек оказывает сильное влияние на природу. Он вырубает леса, загрязняет воду и почву. Осушает болота и распахивает луга. Из-за этого животные оказываются в трудных условиях. Некоторые из них вымирают.

«С природой дело обстоит совсем иначе, чем скажем, с дворцами, разрушенными войной, – их можно построить заново. А вот если уничтожить живой мир, то никакая сила не сможет создать его вновь» – писал Б. Гржилип.

Природу, которая даёт нам все для жизни, надо оберегать, спасать, защищать. Слайд 19

Решение этих проблем задача взрослых. А что можем мы сделать, что в наших силах? А чтобы ответить на этот вопрос, мы с вами отправимсяв царство природы, в башкирский лес. А живёт здесь мудрая бабушка Сова. Она охраняет лесное царство Башкирии. Слайд 20

Сова вас приветствует и приглашает в волшебный лес, где вы вспомните правила поведения в природе. Отправляемся в путешествие и выполняем задания Мудрой Совы.

А вот на поляне разбросаны банки и разбита бутылка. Кто – то здесь отдыхал и оставил мусор после себя. Слайд 21-23

– О чём забыли отдыхающие? (Сорить в лесу нельзя.)

– Верно ребята! Сова с вами согласна. Первое правило для тех кто приходит в лес: Не сори! Надо убирать мусор на поляне.

– Ребята, прав ли тот, кто так поступил?

– Как поступили бы вы?

– А вот задание Мудрой Совы.

– Глазки устали, давайте наши глазки отдохнут

3. Физминутка для глаз Слайд 24

4. Задание Мудрой Совы:

А) Сколько всего десятков в числах: 820, 300, 540 Слайд 25
Б) Сколько всего сотен в числах 300, 400, 700? Слайд 26

III. Постановка учебной проблемы.

1. Проблемная ситуация с затруднением.

  • 78: 3
  • 20 * 4
  • 480 + 310
  • 520 – 70
  • 300* 2
  • 840: 4

– Что нужно сделать в этом задании? (Вычислить, найти значение выражений.)

Выражения, какого вида здесь встретились? (:.*,-,+ чисел.)

– Вы смогли выполнить задание?

А) если с практическим заданием справилось несколько человек:

– Решили? Чуть позднее мы посмотрим, каким способом вы это сделали.

– А у остальных учеников, в чём затруднение? Чем это задание отличается от предыдущих заданий?

Б) если задание выполнила значительная часть класса:

– Неужели решили? А ведь задание было новым. Чем оно не похоже на предыдущие задания?

В) Наконец, можно столкнуть разные мнения учеников вопросом:

– У тебя сколько получилось? А у тебя сколько?

– Задание было одно? А результаты какие? Почему так получилось? Чем это задание не похоже на предыдущие задания?

IV . Постановка цели урока и формулирование темы урока

– Какой возникает вопрос? (Как делить и умножать такие круглые трёхзначные числа?)

– Какова цель нашего урока? Что мы сегодня делаем? (Учимся делить и умножать круглые трёхзначные числа)

C лайд 27

V. Поиск решения проблемы.

Подведение к самостоятельному формулированию нового алгоритма.

– Так как же делить и умножать трёхзначные числа?

– Какие есть гипотезы, предположения? Какие ещё есть версии? Кто думает иначе?(Дети высказывают гипотезы, если процесс затягивается, то применить подсказку или следует привлечь тех учеников, которые уже выполнили это задание: воз… Все гипотезы фиксируются на доске.)

Проверка одновременно выдвинутых гипотез (фронтально).

А) Ошибочные гипотезы проверяются устно:

– Вы с этой гипотезой согласны? Почему нет?

Б) Решающая гипотеза проверяется практически:

– Как нам проверить эту гипотезу? (Решить. Выполнить деление и умножение на доске)

– Что должны помнить когда делим и умножаем круглые трёхзначные числа, чтоб не ошибиться. Привести к выводу алгоритма решения выражений:

Алгоритм решения: C лайд 28

1-й шаг: Выразить трёхзначное число в десятках или в сотнях.

2-й шаг: Выполнить деление или умножение этих десятков или сотен.

– Путешествие наше продолжается

Физминутка. «Зарядка в лесу» Приложение 2 Слайд 29-30

– Ребята, о каком правиле поведения в лесу вы вспомнили, выполняя физминутку, в которой говориться о птицах и животных? О каком правиле поведения в природе мы должны помнить?

– Нельзя шуметь в лесу. Слайд 31

– Правильно, ребята. Следующее правило поведения в лесу: Не шуми! Будете шуметь – распугаете птиц и они перестанут петь свои чудесные песни. Следующее задание Совы:

VI. Первичное закрепление правила во внешней речи.

1. Проверка сделанных формулировок и окончательное формулирование нового правила.

Продолжаем наше путешествие по лесу. Какую страшную картину видим Слайд 32-34.

А как должны вести мы, чтоб этого не случилось в лесу? Следующее правило поведения в лесу: Не разжигай костёр в лесу без взрослых.

Очередное задание для вас Мудрой Совы Слайд 35 :

Откройте учебники на странице 74 (Т.Е.Демидова, С.А.Козлова, А.П.Тонких «Моя математика. 3 класс. 2 часть» ), проверьте совпадает ли наше предположение с тем что предлагают нам авторы учебника.

Задание №2. Стр 72

Совместное обсуждение и выступление по очереди.)

Дети проговаривают ещё раз алгоритм решения во внешней речи.

  1. 840:4=84д. : 4=21д.=210
  2. 840: 4=210 (в.)
  3. 300∙ 2=3с. ∙ 2=6с.=600
  4. 300м ∙2=600м Слайд 36

Продолжим работу в парах (с каждой группы).

– Задание №4

– Что необходимо сделать в задании?

– Как будете работать в парах, как распределите работу между собой? (Решение по столбику, взаимопроверка и выступление по очереди.)

– Работаем в парах, затем проверяем.

Проверка с проговариванием алгоритма во внешней речи.

(30 * 3 = 90, 300 * 3 = 30 дес. * 3 = 90 дес= 900).)

– С какай целью выполняли это задание? А ты как считаешь? У кого другое мнение?

– Не подходи близко к гнёздам птиц. Не разоряй птичьи гнёзда.

Совершенно верно дети. Мудрая Сова с вами согласна. Следующее правило: Не разоряй птичьи гнёзда.

4 задание Мудрой Совы Задание № 6 стр.75 (а) Слайд 37

а) самостоятельно читаем задачу и подчёркиваем все упомянутые в ней величины,

б) записываем их на доске(900 секунд,1\5 часть времени гнался за стаей скумбрий, а остальное время наблюдал за черноморской акулой.

в) анализ задачи (вопросы учителя)

– Что известно в задаче?

– Что надо найти?

– Можем ли мы сразу ответить на вопрос задачи?

– Как найти время, когда он гнался за стаей скумбрий, а остальное время,когда наблюдал за черноморской акулой.

Составьте ход решения задачи (шаги).

– В тетради записываем только решение с пояснением и ответ. (один ученик записывает решение на доске)

  1. 900: 2 = 450 (сек)
  2. 900: 5 =180 (сек) – ? мин и? сек
  3. 900 – 180 – 450 =270 (сек)

Попали мы в рощу. И закончим наше путешествие вместе с Совой в роще Слайд 38

– Находясь в лесу, о каких правилах поведения вы должны помнить?

– Нельзя рвать цветы, ломать ветки, разрушать муравейники.

Верно, ребята! Следующее правило: Не губи! Не рви цветы, не ломай ветки, не разрушай муравейники. Берегите нашу природу! Слайд 39-41

VII. Рефлексия .

1. Подведение итогов урока.

– Давайте подведём итоги.

– Какова тема нашего урока? Тема урока: Умножение и деление трёхзначных чисел

– Какова цель нашего урока? (Учимся делить и умножать трёхзначные числа, которые заканчиваются нулём)

– Да, мы учились делить и умножать трёхзначные числа, которые заканчиваются нулём)

– Как можно разделить и умножать трёхзначные числа, которые заканчиваются нулём?

1-й шаг: – Выразить трёхзначное число в десятках или в сотнях.

2-й шаг: – Выполнить деление или умножение этих десятков или сотен.

– Достигли мы цели? (Да. )

– Где мы можем применить новые знания? (В жизни решаем задачи, связанные с этой темой )

2. Оценивание основных результатов работы на уроке.

– Чему учились на уроке? (Найти произведение или частное трёхзначных чисел, запись которых оканчивается нулями.)

– Где эти знания могут нам пригодиться? (При решении разных задач и заданий.)

– Кроме занятий по математике мы говорили с вами о нашем общем доме – планете Земля.

Человек неотделим от природы. Он учится у природы. Уважайте законы природы. Только в содружестве с ней мы можем быть счастливы.

Домашнее задание. Слайд 42

Даётся дифференцированно по степени творчества.

I уровень (репродуктивный) – № 6 (б),7 на странице 75 (Т.Е.Демидова, С.А.Козлова, А.П.Тонких «Моя математика. 3 класс. 2 часть» ) выполняют все.

II уровень (продуктивный) – а). Составить две составные задачи в соответствии с темой урока

б) А для самых умных и самых активных я предлагаю составить проверочную карточку для одноклассников с заданиями по данной теме.

2. Самооценивание на уроке.

– Что нового вы узнали на уроке для себя?

– Что вам понравилось делать больше всего?

– В чём были трудности?

– Чему ещё важному учились на уроке? (доказывать своё мнение, договариваться, работать вместе)

Красный кружок –узнал на уроке нужного, интересного, полезного. Работой своей доволен.

Желтый – не совсем доволен своей работой, но тему понял.

Синий – надо ещё поработать и повторить, тема для меня трудная.

– Кроме занятий по математике мы говорили с вами о нашем общем доме – планете Земля. Человек неотделим от природы. Он учится у природы. Уважайте законы природы. Только в содружестве с ней мы можем быть счастливы.

Вы должны соблюдать эти правила которые мы сегодня повторили, собираясь на пикник с родителями. А теперь прочитаем стихотворение, которое нам подготовила наша лесная жительница. На экране:

Я сорвала цветок – он завял,
Я поймала жука – он умер.
И тогда я поняла, что прикоснуться
К красоте природы можно только сердцем. Слайд 44-46

Чтобы наша планета существовала долго, нужно о ней заботиться: о растениях, о животных, о птицах, о состоянии воды, почвы и атмосферы. Я надеюсь, что вы не только сегодня на уроке были защитниками природы, но и сейчас, когда на улице зима, будете заботиться о живых существах: сделаете кормушки и станете подкармливать птиц, позаботитесь о животных. Слайд 47

Урок математики по теме "Умножение и деление трехзначных чисел на однозначное число без перехода через разряд".

Цель: закреплять знания, умения и навыки умножать и делить трёхзначное число на однозначное число без перехода через разряд; формировать умения применять на практике теоретические знания, навыки решения задач; развивать словесно-логическое мышление через постановку проблемных вопросов, внимательность, сообразительность, самостоятельность; воспитывать нравственные качества путём организации взаимопомощи, обсуждения качеств, нужных на уроке. положительную мотивацию урока.

Оборудование: компьютер, диапроектор, презентация, карточки.

ХОД УРОКА

1. Организационный момент

Упражнение на дыхание «Новый урок».

На занимательный урок
Дал старт заливистый звонок.
Вы готовы считать?
Быстро делить и умножать.

- Какие качества и учебные навыки нам понадобятся на уроке? Выберите.

(слайд №2)

Сообразительность

Смекалка

Лень

Внимание

Шум

Усидчивость

- Берём их с собой на урок?

II. Проверка домашнего задания

Внимание! Внимание!
Начинаем урок с проверки домашнего задания.

Домашнее задание: № 745, стр. 160.

(слайд №3)

«Найдите лишнее число»

321, 222, 243, 212, 444, 221, 214, 211, 311, 142, 123

(слайд 2)

- Кто согласен с числом?

Дети поднимают руки.

Составьте пример, в ответе которого можно получить 444.

Что ещё было задано на дом?

2. Математический диктант.

Произведение чисел 8 и 9;

частное чисел 36 и 4;

увеличь 8 в 6 раз;

уменьши 27 в 3 раза;

во сколько раз 15 больше 3;

1 множитель 9, второй такой же, чему равно произведение;

делимое 42, частное 7, чему равен делитель;

на какое число нельзя делить.

А теперь проверьте себя! (Слайд №4)

б ) На следующие вопросы вы отвечаете или «да», или «нет»

Все трёхзначные числа нечетные;

Все трёхзначные числа больше 9;

Если число умножить на 1, получится 1;

Если число разделить само на себя, получится 0;

Все четные числа делятся на 2

Некоторые трёхзначные числа меньше 9;

На 0 делить нельзя;

При умножении числа на 1, получится тоже число;

Проверьте себя! (Слайд №4)

III. Устный счёт

(слайд 5)

1. Одна футболка в магазине стоит 80 рублей. Сколько нужно заплатить денег, чтобы купить футболки всем мальчикам нашего класса? (80 р. х 8 = 640 р.)

2. Девочкам нашего класса купили юбки. За всю покупку заплатили 250 рублей. Сколько стоит одна юбка? (250р.:1=250р.)

3.Школа закупила 200 пачек хозяйственного мыла. Каждая пачка стоит 5 рублей. Сосчитайте общую сумму стоимости покупки. (5 р. х 200 = 1000 р.)

- Что мы повторили, решая эту задачу? (Мы повторили таблицу умножения и деления.)

IV. Сообщение темы и цели урока.

V. Закрепление материала.

а) Решение задачи по краткой записи

(слайд №6)

- Подумайте и составьте задачу, начав словами:

За неделю наша школа расходует…

- О чём эта задача? (Эта задача об овощах: картофеле и моркови.)
- Что известно в задаче? (Известно, что картофеля расходуется 488 кг.)
- Что сказано про морковь? (Моркови расходуется в 4 раза меньше, чем картофеля.)
- Каким действием узнаем, сколько израсходовали моркови? (Действием деления 488: 4 = 122 кг)
- Можно ли теперь ответить на вопрос задачи? (Сложим картофель и морковь вместе и ответим на вопрос задачи.)

Решение задачи на доске и в тетрадях с комментариями

Физминутка.

а) Игра «Делится - не делится»

(Слайд № 7)

- Я называю пару чисел. Ваша задача: если числа делятся между собой, то вы тихо встаёте; если не делятся, то хлопаете в ладоши.

248: 2 = ;
367: 3 = ;
848: 4 = ;
481: 2 = ;
936: 3 = ;
695: 3 = .

б) Зарядка для глаз. (Слайд № 8,9)

Внимательно смотрите за движением разноцветных кругов!

VI. Закрепление

а) Запиши только ответы. (Слайд №10)

Проверка (Слайд №11).

б) Работа с учебником.

Стр. 160№ 741 - у доски.

Разбор и анализ задачи.

в) Самостоятельная работа

223

450

101

777

684

969

Взаимопроверка.

VII. Домашнее задание. (слайд №12)

- Дома вы должны решить № 747стр. 160.

(Разбор д/з).

VII. Итог урока. Выставление оценок.

Рефлексия (Сегодня на уроке я….).

gastroguru © 2017