Выбор читателей
Популярные статьи
Видеоурок: Классы неорганических соединений
Лекция: Классификация неорганических веществ. Номенклатура неорганических веществ (тривиальная и международная)
Начнем с простого деления неорганических веществ на простые и сложные. Молекулы простых состоят из атомов одного элемента, а сложных из атомов нескольких элементов. Простые делятся на металлы и неметаллы. Сложные в свою очередь подразделены на оксиды, гидроксиды, соли.
Оксиды
Оксиды - это сложные вещества, состоящие из двух элементов, один из которых кислород со степенью окисления -2.
Оксиды подразделяются на солеобразующие (основные, кислотные, амфотерные), несолеобразующие и солеобразные (двойные).
Основные оксиды обладают основными свойствами и способны образовать типичные металлы, имеющие степень окисления +1, +2, (Li 2 O, MgO, CaO, CuO).
Кислотные оксиды обладают кислотными свойствами и способны образовать неметаллы со степенью окисления более +2. Так же образуют металлы со степенью от +5 до +7 (SO 2 , SeO 2 , P 2 O 5 , As 2 O 3 , CO 2 , SiO 2 , CrO 3 , и Mn 2 O 7). Исключение: у оксидов NO 2 и ClO 2 нет соответствующих кислотных гидроксидов. Несмотря на это, их считают кислотными.
Амфортерные оксиды обладают и основными, и кислотными свойствами. Они образованы амфотерными металлами, имеющими степень окисления +2, +3, +4 (Cr 2 O 3 , Al 2 O 3 , GeO 2 , SnO 2 . В данной группе оксидов со степенью окисления +2 всего 4: ZnO, PbO, SnO, BeO.
Несолеобразующие оксиды не обладают ни основными, ни кислотными свойствами. К ним относятся оксиды неметаллов со степенью окисления +1, +2. Их всего 4: CO, NO, N 2 O, SiO.
Солеобразные оксиды образованы двумя элементами с разными степенями окисления. К примеру, магнитный железняк FeO·Fe 2 O 3 , который при взаимодействии с кислотами образует две соли: FeO·Fe 2 O 3 + 4H 2 SO 4 → FeSO 4 + Fe 2 (SO 4) 3 + 4H 2 O
Гидроксиды
Гидроксиды - это сложные вещества, состоящие из оксидов и воды, имеющие гидроксогруппу (OH -).
Они подразделяются на основания, кислородсодержащие кислоты и амфотерные гидроксиды.
К примеру:
К примеру:
Соли
Соли - сложные химические вещества, образованные атомами металлов, связанных с кислотными остатками.
К примеру:
Существуют следующие виды солей:
Средние соли – соли, содержащие атомы металлов и кислотного остатка. К примеру: нитрат кальция Ca(NO 3) 2 , сульфат свинца PbSO 4 , карбонат натрия Na 2 CO 3 и др.
Кислые соли – соли, содержащие атомы металлов, кислотного остатка и водорода. Атомы металла образуются при нейтрализации основания избытком кислоты. Чтобы образовать название какой - либо кислой соли, необходимо к названию соли добавить приставку гидро - или дигидро -. Приставка зависит от числа атомов водорода, входящих в состав кислой соли. Пример : KHCO 3 – гидрокарбонат калия, КH 2 PO 4 – дигидроортофосфат калия. Так же необходимо помнить, что кислые соли способны образовывать две и более основные кислоты. Ими могут быть как кислородсодержащие, так и бескислородные кислоты.
Основные соли – соли, содержащие атомы металлов, кислотного остатка и гидроксогруппы (OH−). Чтобы определить название основной соли, необходимо к названию обычной соли добавить приставку гидроксо- или дигидроксо. Приставка будет зависеть от количества ОН - групп, входящих в состав соли. К примеру, (CuOH) 2 CO 3 - гидроксокарбонат меди (II). Так же следует знать, что основные соли образуют основания, содержащие в составе две и более гидроксогрупп.
Двойные соли – соли, содержащие катионы двух металлов и кислотный остаток. К примеру, сульфат алюминия - калия KAl(SO 4) 2 ·12H 2 O
Смешанные соли – соли, содержащие анионы двух металлов и кислотный остаток. К примеру, дигидроксокарбонат меди (II) Cu 2 (OH) 2 CO 3 .
Гидратные соли – соли, содержащие молекулы кристаллизационной воды. К примеру, декагидрат сульфата натрия Na 2 SO 4 10H 2 O
Построение формул и названий определяются химической тривиальной и международной номенклатурой. Тривиальные названия – это исторически сложившиеся традиционные названия.
Формула | Тривиальные названия | Международные названия |
Поваренная соль | Хлорид натрия |
|
Едкий натр | Гидроксид натрия |
|
Сода, кальцинированная сода | Карбонат натрия |
|
Питьевая сода | Гидрокарбонат натрия |
|
Жидкое стекло | Силикат натрия |
|
Негашеная известь | Оксид кальция |
|
Гашеная известь | Гидроксид кальция |
|
Известняк, мел, мрамор | Карбонат кальция |
|
Фторид кальция |
||
Графит, алмаз | ||
Угарный газ | Монооксид углерода |
|
Углекислый газ | Диоксид углерода |
|
Едкое кали | Гидроксид калия |
|
Карбонат калия |
||
Калийная селитра | Нитрат калия |
|
Бертолетова соль | Хлорат калия |
|
Желтая кровяная соль | Гексацианоферрат (II) калия |
|
Красная кровяная соль | Гексацианоферрат (III) калия |
|
Жженая магнезия Оксид магния | Оксид магния |
|
Магнезит Карбонат магния | Карбонат магния |
|
Оксид железа (III) |
||
Железный колчедан, пирит | Дисульфид железа |
|
Fe 4 3 | Берлинская лазурь | Гексацианоферрат (II) железа (III) |
Железный купорос | Гептагидрат сульфата железа (II) |
|
Медный блеск | Сульфид меди (I) |
|
Cu 2 (OH) 2 CO 3 | Карбонат гидроксомеди (II) |
|
Медный купорос | Пентагидрат сульфата меди (II) |
| |
Классификация веществ
Все вещества делятся на простые (элементарные) и сложные. Простые вещества состоят из одного элемента, сложные – из двух и более элементов. Простые вещества разделяются на металлы и неметаллы.
Металлы имеют характерный «металлический» блеск, обладают ковкостью, тягучестью, могут прокатываться в листы или вытягиваться в проволоку, обладают хорошей теплопроводностью и электрической проводимостью. При комнатной температуре все металлы (кроме ртути) находятся в твердом состоянии.
Неметаллы не обладают характерным для металлов блеском, хрупки, очень плохо проводят теплоту и электричество. Некоторые из них при обычных условиях газообразны.
Сложные вещества делят на органические и неорганические (минеральные). Органическими принято называть соединения углерода, за исключением простейших соединений углерода (CO, CO 2 , H 2 CO 3 , HCN и их солей и др.); все остальные вещества называются неорганическими.
Сложные неорганические соединения классифицируются как по составу, так и по химическим свойствам (функциональным признакам). По составу они, прежде всего, подразделяются на двухэлементные, или бинарные, соединения (оксиды, сульфиды, галогениды, нитриды, карбиды, гидриды) и многоэлементные соединения; кислородсодержащие, азотсодержащие и т. п.
По химическим свойствам неорганические соединения подразделяются на четыре основных класса: оксиды, кислоты, основания, соли.
Оксиды
Оксидами называются сложные вещества, состоящие из двух элементов, один из которых кислород (Cr 2 O 3 , K 2 O, CO 2 и т. д.). Кислород в оксидах всегда двухвалентен и имеет степень окисления, равную -2.
По химическим свойствам оксиды подразделяются на солеобразующие и несолеобразующие (безразличные: CO, NO, N 2 O). Солеобразующие оксиды подразделяются на основные, кислотные и амфотерные.
Основными называются оксиды, взаимодействующие с кислотами или кислотными оксидами, с образованием солей:
CuO + 2HCl=CuCl 2 + H 2 O,
MgO + CO 2 = MgCO 3 .
Образование основных оксидов характерно для металлов с невысокой степенью окисления (+1, +2).
Оксиды щелочных (Li, Na, K, Rb, Cs) и щелочноземельных металлов (Ca, Sr, Ba, Ra) взаимодействуют с водой, образуя основания. Например:
Na 2 O + H 2 O = 2NaOH,
CaO + H 2 O = Ca(OH) 2 .
Большая часть основных оксидов с водой не взаимодействует. Основания таких оксидов получают косвенным путем:
a) CuO + 2HCl=CuCl 2 + H 2 O;
б) CuCl 2 + 2KOH = Cu(OH) 2 +2KCl.
Кислотными называются оксиды, взаимодействующие с основаниями или с основными оксидами с образованием солей. Например:
SO 3 + 2KOH = K 2 SO 4 + H 2 O,
CaO + CO 2 = CaCO 3 .
К кислотным оксидам относятся оксиды типичных неметаллов -SO 2 , N 2 O 5 , SiO 2 , CO 2 и др., а также оксиды металлов с высокой степенью окисления (+5,+6,+7, +8) -V 2 O 5 , CrO 3 , Mn 2 O 7 и др.
Ряд кислотных оксидов (SO 3 , SO 2 , N 2 O 3 , N 2 O 5 , CO 2 и др.) при взаимодействии с водой образуют кислоты:
SO 3 + H 2 O = H 2 SO 4 ,
N 2 O 5 + H 2 O = 2HNO 3 .
Соответствующие кислоты других кислотных оксидов (SiO 2 , TeO 2 , TeO 3 , MoO 3 , WO 3 , и др.) получают косвенным путем. Например:
а) SiO 2 + 2NaOH = Na 2 SiO 3 + H 2 O
б) Na 2 SiO 3 +2HCl= H 2 SiO 3 + 2NaCl
Один из способов получения кислотных оксидов – отнятие воды от соответствующих кислот. Поэтому кислотные оксиды иногда называют ангидридами кислот.
Амфотерными называют оксиды, образующие соли при взаимодействии, как с кислотами, так и с основаниями, т. е. обладающие двойственными свойствами – свойствами основных и кислотных оксидов. Например:
SnO + H 2 SO 4 = SnSO 4 + H 2 O,
SnO + 2KOH + H 2 O = K 2 ,
ZnO + 2KOH = K 2 ZnO 2 + H 2 O.
К числу амфотерных оксидов относятся: ZnO, BeO, SnO, PbO, Al 2 O 3 , Cr 2 O 3 , Fe 2 O 3 , Sb 2 O 3 , MnO 2 и др.
Следует отметить, что в соответствии с изменением химической природы элементов в периодической системе элементов (от металлов к неметаллам) закономерно изменяются и химические свойства соединений, в частности, кислотно-основная активность их оксидов. Так, в случае высших оксидов элементов 3 периода в ряду: Na 2 O, MgO, Al 2 O 3 , SiO 2 , P 2 O 5 , SO 3 , Cl 2 O 7 - по мере уменьшения степени полярности связи Э-О (уменьшается DЭО; уменьшается отрицательный эффективный заряд атома кислорода) ослабляются основные и нарастают кислотные свойства оксидов: Na 2 O, MgO - основные оксиды; Al 2 O 3 – амфотерный; SiO 2 , P 2 O 5 , SO 3 , Cl 2 O 7 - кислотные оксиды (слева направо кислотный характер оксидов усиливается).
Способы получения оксидов:
1. Взаимодействие простых веществ с кислородом (окисление):
4Fe + 3O 2 = 2Fe 2 O 3 ,
S + O 2 = SO 2 .
2. Горение сложных веществ:
CH 4 + 2O 2 = CO 2 + 2H 2 O,
2SO 2 + O 2 = 2SO 3 .
3. Термическое разложение солей, оснований, кислот:
CaCO 3 ® CaO + CO 2 ,
Cd(OH) 2 ® CdO + H 2 O,
H 2 SO 4 ® SO 3 + H 2 O.
Номенклатура оксидов. Названия оксидов строятся из слова “оксид” и названия элемента в родительном падеже, который соединен с атомами кислорода. Если элемент образует несколько оксидов, то в скобках римскими цифрами указывается его степень окисления (с.о.), при этом знак с. о. не указывается. Например, MnO 2 – оксид марганца (IV), MnO – оксид марганца (II). Если элемент образует один оксид, то его с. о. не приводится: Na 2 O – оксид натрия.
Иногда в названиях оксидов встречаются приставки ди-, три-, тетра- и т.д. Они обозначают, что в молекуле этого оксида на один атом элемента приходится 2,3,4 и т.д. атома кислорода, например, CO 2 – диоксид углерода и т.д.
Гидроксиды
Среди многоэлементных соединений важную группу составляют гидроксиды – сложные вещества, содержащие гидроксогруппы OH. Некоторые из них (основные гидроксиды) проявляют свойства оснований - NaOH, Ba(OH) 2 и т.п.; другие (кислотные гидроксиды) проявляют свойства кислот – HNO 3 , H 3 PO 4 , и др.; существуют и амфотерные гидроксиды, способные в зависимости от условий проявлять как основные, так и кислотные свойства - Zn(OH) 2 , Al(OH) 3 и др.
Свойства и характер гидроксидов также находятся в зависимости от заряда ядра центрального атома (условное обозначение Э) и его радиуса, т.е. от прочности и полярности связей Э – О и О – Н.
Если энергия связи E O - H << E Э - О, то диссоциация гидроксида протекает по кислотному типу, т. е. разрушается связь О – Н.
ЭОН Û ЭО - + H +
Если E O-H >> E Э – O , то диссоциация гидроксида протекает по основному типу, т. е. разрушается связь Э - O
ЭOH Û Э + + OH -
Если энергии связей O – H и Э – О близки или равны, то диссоциация гидроксида может протекать одновременно по обоим направлениям. В этом случае речь идет об амфотерных гидроксидах:
Э n+ + nOH - Û Э(OH) n = H n ЭO n Û nH + + ЭО n n-
В соответствии с изменением химической природы элементов в периодической системе элементов закономерно изменяется кислотно-основная активность их гидроксидов: от основных гидроксидов через амфотерные к кислотным. Например, для высших гидроксидов элементов 3 периода:
NaOH, Mg(OH) 2 – основания (слева направо основные свойства ослабевают);
Al(OH) 3 – амфотерный гидроксид;
H 2 SiO 3 , H 3 PO 4 , H 2 SO 4 , HСlO 4 – кислоты (слева направо сила кислот увеличивается).
Гидроксиды металлов относятся к основаниям. Чем ярче выражены металлические свойства элемента, тем сильнее выражены основные свойства соответствующего гидроксида металла в высшей с.о. Гидроксиды неметаллов проявляют кислотные свойства. Чем ярче выражены неметаллические свойства элемента, тем сильнее кислотные свойства соответствующего гидроксида.
Кислоты
Кислоты – это вещества, диссоциирующие в растворах с образованием катионов водорода и анионов кислотного остатка (с позиций теории электролитической диссоциации).
Кислоты классифицируют по их силе (по способности к электролитической диссоциации – на сильные и слабые), по основности (по числу атомов водорода в молекуле кислоты, способных замещаться атомами металла с образованием соли – на одноосновные, двухосновные, трехосновные), по наличию или отсутствию кислорода в составе кислоты (на кислородсодержащие и бескислородные). Например, азотная кислота HNO 3 – сильная, одноосновная, кислородсодержащая кислота; сероводородная кислота H 2 S – слабая, двухосновная, бескислородная кислота.
Химические свойства кислот:
1. Взаимодействие с основаниями с образованием соли и воды (реакция нейтрализации):
H 2 SO 4 + Cu (OH) 2 = CuSO 4 + 2H 2 O.
2. Взаимодействие с основными и амфотерными оксидами с образованием солей и воды:
2HNO 3 + MgO = Mg(NO 3) 2 + H 2 O,
H 2 SO 4 + ZnO = ZnSO 4 + H 2 O.
3. Взаимодействие с металлами. Металлы, стоящие в “Ряду напряжений” до водорода, вытесняют водород из растворов кислот (кроме азотной и концентрированной серной кислот); при этом образуется соль:
Zn + 2HCl =ZnCl 2 + H 2 .
Металлы, находящиеся в “Ряду напряжений” после водорода, водород из растворов кислот не вытесняют
Взаимодействие металлов с азотной и концентрированной серной кислотами см. в разделе 11.
4. Некоторые кислоты при нагревании разлагаются:
H 2 SiO 3 H 2 O + SiO 2 .
5. Менее летучие кислоты вытесняют более летучие кислоты из их солей:
H 2 SO 4 конц + NaCl тв = NaHSO 4 + HCl.
6. Более сильные кислоты вытесняют менее сильные кислоты из растворов их солей:
2HCl + Na 2 CO 3 = 2NaCl + H 2 O + CO 2
Номенклатура кислот. Названия бескислородных кислот составляют, добавляя к корню русского названия кислотообразующего элемента (или к названию группы атомов, например, CN – циан, CNS – родан) суффикс -о- , окончание водородная и слово “кислота”. Например, HCl – хлороводородная кислота, H 2 S – сероводородная кислота, HCN – циановодородная кислота.
Названия кислородосодержащих кислот также образуются от русского названия кислотообразующего элемента с добавлением соответствующих суффиксов, окончаний и слова “кислота”. При этом название кислоты, в которой элемент находится в высшей степени окисления, оканчивается на -ная или -овая ; например, H 2 SO 4 – серная кислота, HClO 4 – хлорная кислота, H 3 AsO 4 – мышьяковая кислота. С понижением степени окисления кислотообразующего элемента окончания изменяются в следующей последовательности: -оватая (HClO 3 - хлорноватая кислота), истая (HClO 2 - хлористая кислота), -оватистая (HClO - хлорноватистая кислота). Если элемент образует кислоты, находясь только в двух степенях окисления, то название кислоты, отвечающее более низкой степени окисления элемента, имеет окончание истая (HNO 3 – азотная кислота, HNO 2 – азотистая кислота).
В некоторых случаях к одной молекуле оксида может присоединиться различное количество молекул воды (т.е. элемент в одной и той же степени окисления образует несколько кислот, содержащих по одному атому данного элемента). Тогда кислоту с большим содержанием воды обозначают приставкой орто - , а кислоту с меньшим числом молекул воды обозначают приставкой мета - . Например:
P 2 O 5 + H 2 O = 2HPO 3 - метафосфорная кислота;
P 2 O 5 + 3H 2 O = 2H 3 PO 4 - ортофосфорная кислота.
Основания
Основаниями с позиций теории электролитической диссоциации являются вещества, диссоциирующие в растворах с образованием гидроксид - ионов OH ‾ и ионов металлов (исключение NH 4 OH).
Основания классифицируют по их силе (по способности к электролитической диссоциации – на сильные и слабые), по кислотности (по количеству гидроксогрупп в молекуле, способных замещаться на кислотные остатки – на однокислотные, двукислотные и т. д.), по растворимости (на растворимые основания – щелочи и нерастворимые). Например: NaOH – сильное, однокислотное основание, растворимое (щелочь); Cu(OH) 2 – слабое, двукислотное, нерастворимое основание. К растворимым основаниям (щелочам) относятся гидроксиды щелочных и щелочноземельных металлов. К сильным основаниям относятся все щелочи.
Химические свойства оснований:
1. Взаимодействие с кислотами:
Ca(OH) 2 + H 2 SO 4 = CaSO 4 ¯ + H 2 O.
2. Взаимодействие с кислотными оксидами:
3. Взаимодействие с амфотерными оксидами:
2KOH + Al 2 O 3 = 2KAlO 2 + H 2 O 1,
2KOH + SnO + H 2 O = K 2 [ Sn(OH) 4 ].
4. Взаимодействие с амфотерными основаниями:
2NaOH + Zn(OH) 2 = Na 2 ZnO 2 +2H 2 O2,
2NaOH + Zn(OH) 2 = Na 2 [ Zn(OH) 4 ]3.
5. Термическое разложение оснований с образованием оксидов и воды:
Ca(OH) 2 = CaO + H 2 O.
Гидроксиды щелочных металлов при нагревании не распадаются.
6. Взаимодействие с амфотерными металлами (Zn, Al, Pb, Sn, Be):
Zn + 2NaOH + 2H 2 O = Na 2 + H 2
Амфотерные гидроксиды. Амфотерные гидроксиды (гидраты амфотерных оксидов) способны диссоциировать в водных растворах как по типу кислот, так и по типу оснований. Например:
ZnO 2 2- + 2H + Û Zn(OH) 2 Û Zn 2+ + 2OH .
Поэтому они обладают амфотерными свойствами, т.е. могут взаимодействовать как с кислотами, так и с основаниями:
Zn(OH) 2 + 2HCl = ZnCl 2 + 2H 2 O,
Sn(OH) 2 + 2NaOH = Na 2 [ Sn(OH) 4 ].
Номенклатура оснований. Названия оснований строятся из слова “гидроксид ” и названия металла в родительном падеже с указанием в скобках римскими цифрами его степени окисления, если это величина переменная. Иногда к слову гидроксид добавляют префикс из греческого числительного, указывающий на число гидроксогрупп в молекуле основания. Например: KOH - гидроксид калия; Al(OH) 3 - гидроксид алюминия (тригидроксид алюминия); Cr(OH) 2 – гидроксид хрома (II) (дигидроксид хрома).
Соли
С точки зрения теории электролитической диссоциации соли - это вещества, диссоциирующие в растворах или в расплавах с образованием положительно заряженных ионов, отличных от ионов водорода, и отрицательно заряженных ионов, отличных от гидроксид – ионов.
Соли рассматривают обычно как продукты полного или частичного замещения атомов водорода в молекуле кислоты атомами металла или продукты полного или частичного замещения гидроксогрупп в молекуле основания кислотными остатками. При полном замещении получаются средние (или нормальные) соли, диссоциирующие в растворах или в расплавах с образованием катионов металлов и анионов кислотных остатков (исключение – соли аммония). При неполном замещении водорода кислоты получаются кислые соли, при неполном замещении гидроксогрупп основания – основные соли. Диссоциация кислых и основных солей рассматривается в разделе 8. Кислые соли могут быть образованы только многоосновными кислотами (H 2 SO 4 , H 2 SO 3 , H 2 S,H 3 PO 4 и т. д.), а основные соли – многокислотными основаниями (Mg (OH) 2 ,Ca (OH) 2 , Al (OH) 3 и т. д.).
Примеры образования солей:
Ca (OH) 2 + H 2 SO 4 = CaSO 4 + 2H 2 O,
CaSO 4 (сульфат кальция) – нормальная (средняя) соль;
H 2 SO 4 + NaOH = NaHSO 4 + H 2 O,
NaHSO 4 (гидросульфат натрия) – кислая соль, полученная в результате недостатка взятого основания;
Cu (OH) 2 + HCl = CuOHCl + H 2 O,
CuOHCl (хлорид гидроксомеди (II)) – основная соль, полученная в результате недостатка взятой кислоты.
Химические свойства солей:
I. Соли вступают в реакции ионного обмена, если при этом образуется осадок, слабый электролит или выделяется газ:
с щелочами реагируют соли, катионам металлов которых соответствуют нерастворимые основания:
CuSO 4 + 2NaOH = Na 2 SO 4 + Cu (OH) 2 ↓;
с кислотами взаимодействуют соли:
а) катионы которых образуют с анионом новой кислоты нерастворимую соль:
BaCl 2 + H 2 SO 4 = BaSO 4 ↓ + 2HCl;
б) анионы которой отвечают неустойчивой угольной или какой-либо летучей кислоте (в последнем случае реакция проводится между твердой солью и концентрированной кислотой):
Na 2 CO 3 + 2HCl = 2NaCl + H 2 O + CO 2 ,
NaCl тв + H 2 SO 4конц = NaHSO 4 + HCl;
в) анионы которой отвечают малорастворимой кислоте:
Na 2 SiO 3 + 2HCl = H 2 SiO 3 ↓ + 2NaCl;
г) анионы которой отвечают слабой кислоте:
2CH 3 COONa + H 2 SO 4 = Na 2 SO 4 + 2CH 3 COOH;
cоли взаимодействуют между собой, если одна из образующихся новых солей нерастворима или разлагается (полностью гидролизуется) с выделением газа или осадка:
AgNO 3 + NaCl = NaNO 3 + AgCl↓,
2AlCl 3 + 3Na 2 CO 3 + 3H 2 O = 2Al (OH) 3 ↓ + 6NaCl + 3CO 2 .
II. Соли могут вступать во взаимодействие с металлами, если металл, которому соответствует катион соли, находится в“Ряду напряжений “правее реагирующего свободного металла (более активный металл вытесняет менее активный металл из раствора его соли):
Zn + CuSO 4 = ZnSO 4 + Cu.
III. Некоторые соли разлагаются при нагревании:
CaCO 3 = CaO + CO 2 .
IV. Некоторые соли способны реагировать с водой и образовывать кристаллогидраты:
CuSO 4 + 5H 2 O = CuSO 4 ٭ 5H 2 O ΔH<0
белого цвета сине-голубого цвета
Выделение теплоты и изменение цвета – признаки химических реакций.
V. Соли подвергаются гидролизу. Подробно этот процесс будет описан в разделе 8.10.
VI. Химические свойства кислых и основных солей отличаются от свойств средних солей тем, что кислые соли вступают также во все реакции, характерные для кислот, а основные соли вступают во все реакции, характерные для оснований. Например:
NaHSO 4 + NaOH= Na 2 SO 4 + H 2 O,
MgOHCl + HCl = MgCl 2 + H 2 O.
Получение солей:
1. Взаимодействие основного оксида с кислотой:
CuO + H 2 SO 4 = CuSO 4 + H 2 O.
2. Взаимодействие металла с солью другого металла:
Mg + ZnCl 2 = MgCl 2 + Zn.
3. Взаимодействие металла с кислотой:
Mg + 2HCl = MgCl 2 + H 2 .
4. Взаимодействие основания с кислотным оксидом:
Ca(OH) 2 + CO 2 = CaCO 3 + H 2 O.
5. Взаимодействие основания с кислотой:
Fe(OH) 3 + 3HCl= FeCl 3 + 3H 2 O.
6. Взаимодействие соли с основанием:
FeCl 2 + 2KOH = Fe(OH) 2 ¯ + 2KCl.
7. Взаимодействие двух солей:
Ba(NO 3) 2 + K 2 SO 4 = BaSO 4 ¯ + 2KNO 3 .
8. Взаимодействие металла с неметаллом:
9. Взаимодействие кислоты с солью:
CaCO 3 + 2HCl = CaCl 2 + H 2 O + CO 2 .
10. Взаимодействие кислотного и основного оксидов:
CaO + CO 2 = CaCO 3 .
Номенклатура солей. Согласно международным номенклатурным правилам, названия средних солей образуются из названия кислотного остатка в именительном падеже и названия металла в родительном падеже с указанием в скобках римскими цифрами его степени окисления (если это величина переменная). Название кислотного остатка состоит из корня латинского наименования кислотообразующего элемента, соответствующего окончанияи в некоторых случаях приставки.
Кислотные остатки бескислородных кислот получают окончание ид . Например: SnS – сульфид олова (II), Na 2 Se – селенид натрия. Окончания названий кислотных остатков кислородсодержащих кислот зависят от степени окисления кислотообразующего элемента. Для высшей его степени окисления (“-ная “ или “-овая “ кислота) применяется окончание -ат . Например, соли азотной кислоты HNO 3 называются нитратами, серной кислоты H 2 SO 4 - сульфатами, хромовой кислоты H 2 CrO 4 – хроматами. Для более низкой степени окисления кислотообразующего элемента (“...истая кислота “) применяется окончание ит. Так, соли азотистой кислоты HNO 2 называются нитритами, сернистой кислоты H 2 SO 3 – сульфитами. Если существует кислота с еще более низкой степенью окисления кислотообразующего элемента (“-оватистая кислота “), ее анион получает приставку гипо- и окончание -ит . Например, соли хлорноватистой кислоты HClО называют гипохлоритами.
Соли некоторых кислот в соответствии с исторически сложившейся традицией сохранили названия, отличающиеся от систематических. Так, соли марганцовой кислоты HMnO 4 называют перманганатами, хлорной кислоты HClO 4 – перхлоратами, йодной кислоты HIO 4 – периодатами. Соли марганцовистой кислоты H 2 MnO 4 , хлорноватой HClO 3 и йодноватой HIO 3 кислот называют соответственно манганатами, хлоратами и йодатами.
Названия кислых и основных солей образуются по тем же общим правилам, что и названия средних солей. При этом название аниона кислой соли снабжают приставкой гидро-, указывающей на наличие незамещенных атомов водорода; количество незамещенных атомов водорода указывают греческими числительными приставками. Например, Na 2 HPO 4 – гидроортофосфат натрия, NaH 2 PO 4 – дигидроортофосфат натрия.
Аналогично катион основной соли получает приставку гидроксо- , указывающую на наличие незамещенных гидроксогрупп. Число гидроксильных групп указывают греческим числительным. Например, Cr(OH) 2 NO 3 – нитрат дигидроксохрома (III).
Названия важнейших кислот и их кислотных остатков приведены табл. 4.1.
Таблица 4.1
Названия и формулы кислот и их кислотных остатков
Продолжение табл. 4.1
Простые вещества
.
Молекулы состоят из атомов одного вида (атомов одного элемента). В
химических реакциях не могут разлагаться с образованием других веществ.
Сложные вещества (или химические соединения).
Молекулы состоят из атомов разного вида (атомов различных химических
элементов). В химических реакциях разлагаются с образованием нескольких
других веществ.
Резкой границы между металлами и неметаллами нет, т.к. есть простые вещества, проявляющие двойственные свойства.
Аллотропия
Аллотропия
- способность некоторых химических элементов образовывать несколько простых веществ, различающихся по строению и свойствам.
С - алмаз, графит, карбин.
O - кислород, озон.
S - ромбическая, моноклинная, пластическая.
P - белый, красный, чёрный.
Явление аллотропии вызывается двумя причинами:
1) различным числом атомов в молекуле, например кислород O 2 и озон O 3
2) образованием различных кристаллических форм, например алмаз и графит.
ОСНОВАНИЯ
Основания
- сложные вещества, в которых атомы металлов соединены с одной или
несколькими гидроксильными группами (с точки зрения теории
электролитической диссоциации, основания - сложные вещества, при
диссоциации которых в водном растворе образуются катионы металла (или NH 4 +) и гидроксид - анионы OH -).
Классификация.
Растворимые
в воде (щёлочи) и нерастворимые
. Амфотерные
основания проявляют также свойства слабых кислот.
Получение
1. Реакции активных металлов (щелочных и щелочноземельных металлов) с водой:
2Na + 2H 2 O ® 2NaOH + H 2 -
Ca + 2H 2 O ® Ca(OH) 2 + H 2 -
2. Взаимодействие оксидов активных металлов с водой:
BaO + H 2 O ® Ba(OH) 2
3. Электролиз водных растворов солей
2NaCl + 2H 2 O ® 2NaOH + H 2 - + Cl 2 -
Химические свойства
Щёлочи | Нерастворимые основания |
1. Действие на индикаторы. | |
лакмус - синий метилоранж - жёлтый фенолфталеин - малиновый |
-- |
2. Взаимодействие с кислотными оксидами. | |
2KOH + CO 2 ® K 2 CO 3 + H 2 O KOH + CO 2 ® KHCO 3 |
-- |
3. Взаимодействие с кислотами (реакция нейтрализации) | |
NaOH + HNO 3 ® NaNO 3 + H 2 O | Cu(OH) 2 + 2HCl ® CuCl 2 + 2H 2 O |
4. Обменная реакция с солями | |
Ba(OH) 2 + K 2 SO 4 ® 2KOH + BaSO 4 ¯ 3KOH+Fe(NO 3) 3 ® Fe(OH) 3 ¯ + 3KNO 3 |
-- |
5. Термический распад. | |
-- | Cu(OH) 2 - t ° ® CuO + H 2 O |
ОКСИДЫ
Классификация
Оксиды
- это сложные вещества, состоящие из двух элементов, один из которых кислород.
ОКСИДЫ | |
Несолеобразующие | CO, N 2 O, NO |
Солеобразующие | Основные
-это оксиды металлов, в которых последние проявляют небольшую степень окисления +1, +2 Na 2 O; MgO; CuO |
|
Амфотерные
(обычно для металлов со степенью окисления +3, +4). В качестве гидратов им соответствуют амфотерные гидроксиды ZnO; Al 2 O 3 ; Cr 2 O 3 ; SnO 2 |
|
Кислотные
-это оксиды неметаллов и металлов со степенью окисления от +5 до +7 SO 2 ; SO 3 ; P 2 O 5 ; Mn 2 O 7 ; CrO 3 |
|
Основным оксидам соответствуют основания, кислотным - кислоты, амфотерным - и те и другие |
Получение
1. Взаимодействие простых и сложных веществ с кислородом:
2Mg + O 2 ® 2MgO
4P + 5O 2 ® 2P 2 O 5
S + O 2 ® SO 2
2CO + O 2 ® 2CO 2
2CuS + 3O 2 ® 2CuO + 2SO 2
CH 4 + 2O 2 ® CO 2 + 2H 2 O
4NH 3 + 5O 2 - кат. ® 4NO + 6H 2 O
2. Разложение некоторых кислородсодержащих веществ (оснований, кислот, солей) при нагревании:
Cu(OH) 2 - t ° ® CuO + H 2 O
(CuOH) 2 CO 3 - t ° ® 2CuO + CO 2 + H 2 O
2Pb(NO 3) 2 - t ° ® 2PbO + 4NO 2 + O 2
2HMnO 4 - t ° ;H 2 SO 4 (конц.) ® Mn 2 O 7 + H 2 O
Химические свойства
Основные оксиды | Кислотные оксиды |
1. Взаимодействие с водой | |
Образуется основание: Na 2 O + H 2 O ® 2NaOH CaO + H 2 O ® Ca(OH) 2 |
Образуется кислота: SO 3 + H 2 O ® H 2 SO 4 P 2 O 5 + 3H 2 O ® 2H 3 PO 4 |
2. Взаимодействие с кислотой или основанием: | |
При реакции с кислотой образуется соль и вода MgO + H 2 SO 4 - t ° ® MgSO 4 + H 2 O CuO + 2HCl - t ° ® CuCl 2 + H 2 O |
При реакции с основанием образуется соль и вода CO 2 + Ba(OH) 2 ® BaCO 3 + H 2 O SO 2 + 2NaOH ® Na 2 SO 3 + H 2 O |
Амфотерные оксиды взаимодействуют | |
с кислотами как основные: ZnO + H 2 SO 4 ® ZnSO 4 + H 2 O |
с основаниями как кислотные: ZnO + 2NaOH ® Na 2 ZnO 2 + H 2 O (ZnO + 2NaOH + H 2 O ® Na 2 ) |
3. Взаимодействие основных и кислотных оксидов между собой приводит к солям. | |
Na 2 O + CO 2 ® Na 2 CO 3 | |
4. Восстановление до простых веществ: | |
3CuO + 2NH 3 ® 3Cu + N 2 + 3H 2 O P 2 O 5 + 5C ® 2P + 5CO |
Простые вещества и химические соединения. Оксиды: основные, кислотные и амфотерные. Номенклатура оксидов. Зависимость кислотно-основного характера оксидов от положения в периодической системе и степени окисления элемента. Химическое взаимодействие между оксидами с образованием солей. Гидроксиды основные и амфотерные, кислоты. Их номенклатура и получение. Соли: нормальные, кислые и основные. Номенклатура солей. Получение и свойства солей.
Номенклатура и свойства комплексных соединений.
Неорганические соединения различают по составу (бинарные и многоэлементные) и функциональным признакам. К бинарным соединениям относят соединения элементов с кислородом (оксиды ), галогенами (галогениды – фториды, хлориды, бромиды, иодиды), халькогенами (халькогениды – сульфиды, селениды, теллуриды), азотом (нитриды), фосфором (фосфиды), углеродом (карбиды), кремнием (силициды ), а также соединения металлов друг с другом (интерметаллиды ) и водородом (гидриды ). Среди многоэлементных соединений выделяют гидроксиды (вещества, содержащие гидроксидные группы - ОН), производные гидроксидов – соли , а также комплексные соединения , гидраты и кристаллогидраты.
В соответствии с правилами ИЮПАК наименование любого вещества должно однозначно указывать на его состав. Поэтому в основу систематических.е. нование любого вещества должно однозначно указывать на его состав, поэтому в основу системаи соединений, нные соотношения названий неорганических веществ положены названия элементов, входящих в их состав.
Название бинарного соединения образуется из латинского корня наименования более электроотрицательного элемента с окончанием –ид и русского наименования менее электроотрицательного элемента в родительном падеже. При написании формулы вещества менее электроотрицательный элемент стоит левее. Например, Al 2 O 3 – оксид алюминия, AgI – иодид серебра, OF 2 – фторид кислорода. Для некоторых элементов корни их русских названий совпадают с корнями латинских, за исключением элементов, представленных ниже в таблице 1:
Таблица 1
Названия химических элементов
Символьная запись | Русское название | Латинское название |
Ag | Серебро | Аргент- |
As | Мышьяк | Арс-, арсен- |
Au | Золото | Аур- |
C | Углерод | Карб-, карбон- |
Cu | Медь | Купр- |
Fe | Железо | Ферр- |
H | Водород | Гидр-, гидроген- |
N | Азот | Нитр- |
Ni | Никель | Никкол- |
O | Кислород | Окс-, оксиген- |
Pb | Свинец | Плюмб- |
S | Сера | Сульф-, тио- |
Sb | Сурьма | Стиб- |
Si | Кремний | Сил-, силиц-, силик- |
Hg | Ртуть | Меркур- |
Mn | Марганец | Манган- |
Sn | Олово | Станн- |
Для обозначения количественного состава используют греческие числительные в качестве приставки, например, Hg 2 Cl 2 – дихлорид диртути, СО – монооксид углерода, СО 2 - диоксид углерода.
Числительные приставки имеют следующие названия:
1 - Моно- 5 - Пента- 9 - Нона-
2 - Ди- 6 - Гекса- 10 - Дека-
3 - Три- 7- Гепта- 11 - Ундека-
4 - Тетра- 8 - Окта- 12- Додека- .
Название многоэлементного соединения отражает его функциональные признаки, такие как принадлежность к гидроксидам или кислотам. Гидрооксиды – это соединения оксидов с водой. Их подразделяют на основные, проявляющие в химических реакциях свойства оснований, кислотные – проявляющие свойства кислот, амфотерные – способные проявлять как кислотные, так и основные свойства.
К классу оснований , согласно теории электролитической диссоциации, относят вещества, способные в водном растворе диссоциировать с образованием гидроксид-ионов ОН - : Наименование основного гидроксида (или основания) образовано из слова «гидроксид» и названия элемента в родительном падеже, после которого при необходимости указывают степень окисления элемента. Например, NaOH – гидроксид натрия, Fe(OH) 2 – гидроксид железа (II) или дигидроксид железа. Общую формулу основания можно записать как М(ОН) m , где М – металл, m- число гидроксильных групп, или кислотность основания .
Вещества, способные диссоциировать в растворе с образованием ионов водорода Н + , в соответствии с теорией электролитической диссоциацией относят к классу кислот .
Кислоты в зависимости от наличия в их составе кислорода подразделяются на кислородсодержащие и на безкислородные . В общем случае формулу кислоты можно записать как Н n А, где А – кислотный остаток, n – число атомов водорода в молекуле, или основность кислоты .
Систематическое название кислоты включает в себя наименование двух частей: электроположительной (атомы водорода) и электроотрицательной (кислотный остаток, анион). В названии аниона вначале указывают атомы кислорода (-оксо-), затем кислотообразующего элемента с добавлением суффикса -ат, далее в скобках абсолютную величину степени окисления этого элемента. Например, H 2 CO 3 – триоксокарбонат (IY) водорода, Н 2 SO 4 – тетраоксосульфат (VI) водорода. При наличии в анионе других атомов название аниона составляют из латинских корней названий соответствующих элементов и соединительной гласной -о- в порядке их размещения в формуле справа налево. Например, H 2 SO 3 (O 2) – пероксотриоксосульфат (VI) водорода, Н 2 SO 3 S – тиотриоксосульфат (VI) водорода. Систематические наименования наиболее употребительных кислот представлены в таблице 3.
Традиционное название состоит из двух слов – прилагательного, производного от корня названия кислотообразующего элемента, и слова «кислота», например, Н 2 SO 4 – серная кислота, НNO 3 – азотная кислота.
Амфотерные гидрооксиды способны диссоциировать в водных растворах как по типу оснований, так и по типу кислот, например,
При взаимодействии с кислотами они проявляют свойства оснований, а при взаимодействии с основаниями – свойства кислот. Их названия составляют по схеме, соответствующей основным гидроксидам.
Таблица 2
Названия важнейших кислот и их солей
Формула кислоты | Названия | |
Кислоты | Соли | |
HAlO 2 | Метаалюминиевая | Метаалюминат |
HAsO 3 | Метамышьяковая | Метаарсенат |
H 3 AsO 4 | Ортомышьяковая | Ортоарсенат |
HAsO 2 | Метамышьяковистая | Метаарсенит |
H 3 AsO 3 | Ортмышьяковистая | Ортоарсенит |
HBO 2 | Метаборная | Метаборат |
H 3 BO 3 | Ортоборная | Ортоборат |
H 2 B 4 O 7 | Четырёхборная | Тетраборат |
HBr | Бромводород | Бромид |
HOBr | Бромноватистая | Гипобромит |
HBrO 3 | Бромноватая | Бромат |
HCOOH | Муравьиная | Формиат |
CH 3 COOH | Уксусная | Ацетат |
HCN | Циановодород | Цианид |
H 2 CO 3 | Угольная | Карбонат |
H 2 C 2 O 4 | Щавелевая | Оксалат |
HCl | Хлороводород | Хлорид |
HOCl | Хлорноватистая | Гипохлорит |
HClO 2 | Хлористая | Хлорит |
HClO 3 | Хлорноватая | Хлорат |
HClO 4 | Хлорная | Перхлорат |
HCrO 2 | Метахромистая | Метахромит |
H 2 CrO 4 | Хромовая | Хромат |
H 2 Cr 2 O 7 | Двухромовая | Дихромат |
HI | Йодоводород | Йодид |
HOI | Йодноватистая | Гипойодит |
HIO 3 | Йодноватая | Йодат |
HIO 4 | Йодная | Перйодат |
HMnO 4 | Марганцовая | Перманганат |
H 2 MnO 4 | Марганцовистая | Манганат |
H 2 MoO 4 | Молибденовая | Молибдат |
HN 3 | Азидоводород (азотистоводородная) | Азид |
HNO 2 | Азотистая | Нитрит |
HNO 3 | Азотная | Нитрат |
HPO 3 | Метафосфорная | Метафосфат |
H 3 PO 4 | Ортофосфорная | Ортофосфат |
H 4 P 2 O 7 | Двуфосфорная (пирофосфорная) | Дифосфат (пирофосфат) |
H 3 PO 3 | Фосфористая | Фосфит |
H 3 PO 2 | Фоснофорноватистая | Гипофосфит |
H 2 S | Сероводород | Сульфид |
HSCN | Родановодород | Роданид |
H 2 SO 3 | Сернистая | Сульфит |
H 2 SO 4 | Серная | Сульфат |
H 2 S 2 O 3 | Тиосерная | Тиосульфат |
H 2 S 2 O 7 | Двусерная (пиросерная) | Дисульфат (пиросульфат) |
H 2 S 2 O 8 | Пероксодвусерная (надсерная) | Пероксидосульфат (персульфат) |
H 2 Se | Селеноводород | Селенид |
H 2 SeO 3 | Селенистая | Селенит |
H 2 SeO 4 | Селеновая | Селенат |
H 2 SiO 3 | Кремниевая | Силикат |
HVO 3 | Ванадиевая | Ванадат |
H 2 WO 4 | Вольфрамовая | Вольфрамат |
Соли представляют собой продукты замещения ионов водорода кислоты на металл или гидроксильных групп основания на кислотный остаток. В зависимости от полноты замещения атомов водорода или гидроксильных групп соли подразделяют на средние (или нормальные ), например К 2 SO 4 , кислые (или гидросоли ) например NaHCO 3 , и основные (или гидроксосоли ) например FeOHCl. Различают также двойные соли , образованные двумя металлами и одним кислотным остатком (КАl(SO 4) 2), и смешанные соли, образованные одним металлом и двумя кислотными остатками (СаСlОСl). Названия солей обусловлены систематическими названиями соответствующих кислот, например, К 2 SO 4 – тетраоксосульфат (VI) калия, NaHCO 3 – триоксокарбонат (IY) водорода-натрия, FeOHCl или, точнее, FeClOH – гидрокси-хлорид железа (II).
При наличии числовых приставок (1, 2, . . .) в названии вещества для верного понимания формулы применяют умножение приставки (например, КАl 3 (SO 4) 2 (OH) 6 – гексагидроксид-бис(сульфат) триалюминия-калия). Названия приставок следующие:
1 Монокис- 5 Пентакис- 9 Нонакис-
3 Трис- 7 Гептакис- 11 Ундекасис-
Традиционные наименования солей также содержат названия анионов в именительном падеже и названия катионов в родительном падеже (см. табл. 2), например, К 2 SO 4 – сульфат калия, NaHCO 3 – гидрокарбонат натрия, FeOHCl – гидроксохлорид железа (II).
Оксиды в зависимости от характерных функций, выполняемых в химических реакциях, подразделяют на солеобразующие (среди них выделяют основные, кислотные и амфотерные) и несолеобразующие .
Основные оксиды образуют соли при взаимодействии с кислотами или кислотными оксидами. Им соответствуют основания, так как они их образуют при взаимодействии с водой, например СаО – Са(ОН) 2 .
Кислотные оксиды образуют соли при взаимодействии с основаниями или основными оксидами. Они могут быть получены путем отделения воды от соответствующей кислоты. Поэтому их называют также ангидридами кислот, например SO 3 – ангидрид Н 2 SO 4 .
Амфотерные оксиды образуют соли как при взаимодействии с кислотами, так и при взаимодействии с основаниями, например, ZnO, Al 2 O 3 .
Гидраты и кристаллогидраты – соединения, содержащие в своем составе воду, например, NH 3 ∙ Н 2 О ∙ Fe 2 O 3 , n H 2 O, СuSO 4 ∙ 5Н 2 О. Как систематические, так и традиционные названия таких соединений начинаются со слова «гидрат» с соответствующей приставкой: NH 3 ∙ Н 2 О – гидрат аммиака, Fe 2 O 3 ∙ n H 2 O – полигидрат оксида железа (III), СuSO 4 ∙ 5Н 2 О – пентагидрад тетраоксосульфата меди (II), или пентагидрад сульфата меди (II).
Лекция 5. Химическая термодинамика
Химическая термодинамика. Термодинамические системы. Термодинамические параметры. Термодинамический процесс. Внутренняя энергия, теплота, работа. Первый закон термодинамики. Энтальпия. Закон Гесса и следствия из него. Энтропия. Второе начало термодинамики. Свободная энергия Гиббса и свободная энергия Гельгмольца.
Химическая термодинамика.
Термодинамика изучает взаимное превращение теплоты, работы и различных видов энергии. Слово термодинамика происходит от греческих слов термос (тепло) и динамос (сила, мощь). Термин термодинамика был введён Томсоном в 1854 году, который употребил его как синоним понятий теплота и работа.
Термодинамика основывается на трёх фундаментальных принципах, которые называются началами термодинамики. Они являются обобщением многочисленных экспериментальных фактов.
Применение методов термодинамики к химическим реакциям и процессам обусловили появление химической термодинамики. Предметом изучения химической термодинамики является превращение энергии при химических взаимодействиях, которые происходят при протекании химических процессов.
Термодинамические системы. Термодинамические параметры. Термодинамический процесс.
Термодинамика использует ряд понятий и модельных представлений, таких как термодинамическая система, параметры состояния, энергия, теплота, работа. Перейдем к их рассмотрению.
Понятие система означает ту часть материального мира, которую мы исследуем. Например, химический стакан с водой, реактор на химическом предприятии. Остальная часть материального мира, за пределами условно выделенной системы – называется окружением.
Термодинамической системой – называется совокупность тел, которая фактически или мысленно может быть выделена из окружающей среды. Система отделена от окружения границей, через которую совершается материальный обмен - массообмен или (и) теплообмен. В зависимости от степени изолированности различают открытые, закрытые, изолированные системы.
Открытые системы – это системы, которые обмениваются с внешней средой веществом, механической работой, теплотой и излучением. Например, в пробирке смешивается карбонат натрия (сода) с раствором хлорводородной кислоты. В результате протекает реакция
Na 2 CO 3 + HCl = NaCl + CO 2 + H 2 O.
В рассматриваемом химическом процессе масса системы уменьшается, так как улетучивается диоксид углерода, и выделяется тепло, часть которого идёт на нагрев окружающего воздуха.
Закрытые системы – системы, которые не обмениваются с внешней средой веществом, но взаимодействуют с ней посредством механической работы, теплообмена и излучения. Примером закрытой системы является пробирка, в которой происходит смешение соды с хлорводородной кислотой, закрытая пробкой.
Изолированные системы – системы невзаимодействующие с внешней средой. Между изолированной системой и окружением не происходит никакого обмена ни веществом, ни энергией. На практике понятие абсолютно изолированных систем не существует, оно является абстрактным, мысленным построением. Примером приближенно изолированной системы является термос или сосуд Дьюара.
Система может находиться в том или ином состоянии. Состоянием системы называется совокупность физических и химических свойств, характеризующих систему.
Состояние термодинамической системы характеризуют параметры состояния : давление, объём, температура, концентрация.
Давление (Р) характеризует подвижность молекул и определяется силой, с которой газообразные частицы действуют на стенки сосуда. Давление измеряют в Па (Паскаль), атм (атмосфера), мм рт. ст. (миллиметры ртутного столба): 1 атм = 760 мм рт. ст. = 101325 Па.
Объём (V) характеризует часть пространства, занимаемого веществом. Измеряют объём в м 3 (кубический метр), см 3 (кубический сантиметр), л (литр), мл (миллилитр): 1 м 3 = 1000 л; 1л = 1000 мл.
Температура (Т, t) характеризует степень нагретости системы и измеряется в К (шкала Кельвина) и 0 С (шкала Цельсия). Для перевода температур, выраженных в разных шкалах, используют выражение
Т = t + 273 (1).
Концентрация вещества (с) определяет количественный состав раствора, смеси, расплава. Например, молярная концентрация – количество молей вещества в 1 л раствора или смеси, обозначается через моль/л.
Таким образом, набор параметров (р, V, Т) называется состоянием системы, так как считается, что он полностью определяет состояние. Термодинамические параметры являются макроскопическими величинами, измеряемыми в опыте. Они являются функциями состояния, то есть их изменение определяется только начальным и конечным состояниями и не зависит от пути процесса, в результате которого произошло это изменение
∆ Т = Т кон – Т нач = Т 2 – Т 1 (2).
Для бесконечно малых изменений можно записать
∆ Т = dT (3).
Если величина не является функцией состояния, а зависит от пути процесса, то она является функцией перехода. В этом случае бесконечно малое изменение величины А записывают в виде
∆А = δА (4).
Таким образом, знак ∆ - обозначает изменение величины, являющейся функцией состояния, знак δ – обозначает изменение величины, являющейся функцией перехода.
Термодинамические параметры не являются независимыми, а связаны уравнением состояния. Примером такого уравнения является уравнение состояния идеального газа, которое называется уравнением Менделеева-Клайперона
где n – число молей газа; R – газовая постоянная.
Состояние термодинамической системы может изменяться с течением времени. Обычно такое изменение фиксируется при измерении одного из термодинамических параметров. Поэтому в термодинамике используется понятие термодинамического процесса.
Термодинамическим процессом называется всякое изменение в системе, связанное с изменением хотя бы одного параметра. Таким образом, термодинамический процесс – это изменение состояния системы. Различают следующие процессы: изохорный (V = const), изобарный (p = const), изотермический (T = const), адиабатный (теплота Q = 0).
Термодинамические процессы бывают:
-обратимые , когда переход из одного состояния в другое и обратно может происходить по одному и тому же пути, и после возвращения в исходное состояние в окружающей среде не остаётся макроскопических изменений; примером обратимого процесса является сжатие и растяжение пружины;
-необратимые или неравновесные , когда параметры изменяются с конечной скоростью и переход из одного состояния в другое и обратно не может происходить по одному и тому же пути, в результате в окружающей среде остаются макроскопические изменения; примером необратимого процесса является пластическая деформация металлической проволоки.
Внутренняя энергия, теплота, работа.
Кроме термодинамических параметров немаловажную роль играют и другие термодинамические величины, такие как работа и теплота. Они являются количественной мерой термодинамических процессов и характеризуют участие системы в термодинамических процессах. Работа и теплота являются энергетическими характеристиками. Поэтому рассмотрим понятие энергии.
Энергия происходит от греческого слова «действие» - есть мера способности совершать работу. Энергия измеряется в Дж (Джоуль). Многочисленные наблюдения и опытные факты говорят о следующих свойствах энергии.
Энергия не исчезает и не возникает из ничего.
Энергия может существовать в разнообразных формах.
В изолированной системе энергия может переходить из одной формы в другую, но её количество остаётся постоянным.
Если система не изолирована, то её энергия может изменяться, но при одновременном изменении энергии внешней среды на точно такую же величину.
Любая система обладает определённым запасом энергии, то есть энергия неотъемлемое свойство системы.
Для рассмотрения химических процессов важны следующие формы энергии: солнечная, механическая, химическая, ядерная, электрическая.
Различают следующие виды энергии: кинетическую (энергия движения), потенциальную (энергия положения и взаимодействия) и внутреннюю энергию (энергию состояния).
Оксиды – соединения элементов с кислородом, степень окисления кислорода в оксидах всегда равна -2.
Оснóвные оксиды образуют типичные металлы со С.О. +1,+2 (Li 2 O, MgO, СаО,CuO и др.).
Кислотные оксиды образуют неметаллы со С.О. более +2 и металлы со С.О. от +5 до +7 (SO 2 , SeO 2 , Р 2 O 5 , As 2 O 3 , СO 2 ,SiO 2 , CrO 3 и Mn 2 O 7). Исключение: у оксидов NO 2 и ClO 2 нет соответствующих кислотных гидроксидов, но их считают кислотными.
Амфотерные оксиды образованы амфотерными металлами со С.О. +2,+3,+4 (BeO, Cr 2 O 3 , ZnO, Al 2 O 3 , GeO 2 , SnO 2 и РЬО).
Несолеобразующие оксиды – оксиды неметаллов со С.О.+1,+2 (СО, NO, N 2 O, SiO).
Основания (осно́вные гидрокси́ды ) - сложные вещества, которые состоят из иона металла (или иона аммония) и гидроксогруппы (-OH).
Кислотные гидроксиды (кислоты) — сложные вещества, которые состоят из атомов водорода и кислотного остатка.
Амфотерные гидроксиды образованы элементами с амфотерными свойствами.
Соли – сложные вещества, образованные атомами металлов, соединёнными с кислотными остатками.
Средние (нормальные) соли - все атомы водорода в молекулах кислоты замещены на атомы металла.
Кислые соли - атомы водорода в кислоте замещены атомами металла частично. Они получаются при нейтрализации основания избытком кислоты. Чтобы правильно назвать кислую соль, необходимо к названию нормальной соли прибавить приставку гидро- или дигидро- в зависимости от числа атомов водорода, входящих в состав кислой соли.
Например, KHCO 3 – гидрокарбонат калия, КH 2 PO 4 – дигидроортофосфат калия
Нужно помнить, что кислые соли могут образовывать только двух и более основные кислоты.
Осно́вные соли - гидроксогруппы основания (OH −) частично замещены кислотными остатками. Чтобы назвать основную соль, необходимо к названию нормальной соли прибавить приставку гидроксо- или дигидроксо- в зависимости от числа ОН — групп, входящих в состав соли.
Например, (CuOH) 2 CO 3 — гидроксокарбонат меди (II).
Нужно помнить, что основные соли способны образовывать лишь основания, содержащие в своём составе две и более гидроксогрупп.
Двойные соли - в их составе присутствует два различных катиона, получаются кристаллизацией из смешанного раствора солей с разными катионами, но одинаковыми анионами. Например,KAl(SO 4) 2 , KNaSO 4.
Смешанные соли - в их составе присутствует два различных аниона. Например, Ca(OCl)Cl.
Гидратные соли (кристаллогидраты ) - в их состав входят молекулы кристаллизационной воды. Пример: Na 2 SO 4 ·10H 2 O.
Формула | Тривиальное название |
NaCl | галит, каменная соль, поваренная соль |
Na 2 SO 4 *10H 2 O | глауберова соль |
NaNO 3 | Натриевая, чилийская селитра |
NaOH | едкий натр, каустик, каустическая сода |
Na 2 CO 3 *10H 2 O | кристаллическая сода |
Na 2 CO 3 | Кальцинированная сода |
NaHCO 3 | пищевая (питьевая) сода |
K 2 CO 3 | поташ |
КОН | едкое кали |
KCl | калийная соль, сильвин |
KClO 3 | бертолетова соль |
KNO 3 | Калийная, индийская селитра |
K 3 | красная кровяная соль |
K 4 | желтая кровяная соль |
KFe 3+ | берлинская лазурь |
KFe 2+ | турнбулева синь |
NH 4 Cl | Нашатырь |
NH 3 *H 2 O | нашатырный спирт, аммиачная вода |
(NH 4) 2 Fe(SO 4) 2 | соль Мора |
СаO | негашеная (жженая) известь |
Са(OH) 2 | гашеная известь, известковая вода, известковое молоко, известковое тесто |
СaSO 4 *2H 2 O | Гипс |
CaCO 3 | мрамор, известняк, мел, кальцит |
СаНРO 4 × 2H 2 O | Преципитат |
Са(Н 2 РO 4) 2 | двойной суперфосфат |
Са(Н 2 РO 4) 2 +2СаSO 4 | простой суперфосфат |
CaOCl 2 (Ca(OCl) 2 + CaCl 2) | хлорная известь |
MgO | жженая магнезия |
MgSO 4 *7H 2 O | английская (горькая) соль |
Al 2 O 3 | корунд, боксит, глинозем, рубин, сапфир |
C | алмаз, графит, сажа, уголь, кокс |
AgNO 3 | ляпис |
(CuОН) 2 СO 3 | малахит |
Cu 2 S | медный блеск, халькозин |
CuSO 4 *5H 2 O | медный купорос |
FeSO 4 *7H 2 O | железный купорос |
FeS 2 | пирит, железный колчедан, серный колчедан |
FeСО 3 | сидерит |
Fe 2 О 3 | красный железняк, гематит |
Fe 3 О 4 | магнитный железняк, магнетит |
FeО × nH 2 О | бурый железняк, лимонит |
H 2 SO 4 × nSO 3 | олеум раствор SO 3 в H 2 SO 4 |
N 2 O | веселящий газ |
NO 2 | бурый газ, лисий хвост |
SO 3 | серный газ, серный ангидрид |
SO 2 | сернистый газ, сернистый ангидрид |
CO | угарный газ |
CO 2 | углекислый газ, сухой лед, углекислота |
SiO 2 | кремнезем, кварц, речной песок |
CO + H 2 | водяной газ, синтез-газ |
Pb(CH 3 COO) 2 | свинцовый сахар |
PbS | свинцовый блеск, галенит |
ZnS | цинковая обманка, сфалерит |
HgCl 2 | сулема |
HgS | киноварь |
Статьи по теме: | |
Отделы водорослей К какому царству относятся сине зеленые водоросли
Среди существующих ныне организмов встречаются такие, о принадлежности... Что такое система вообще
В силу того, что системный анализ направлен на решение любых проблем... Курс выживания в дикой природе Подмосковья: как это было
В мае 2012 года в средствах массовой информации появилась информация о... |