Выбор читателей
Популярные статьи
В силу того, что системный анализ направлен на решение любых проблем понятие системы должно быть очень общим, применимым к любым ситуациям. Выход видится в том, чтобы обозначить, перечислить, описать такие черты, свойства, особенности систем, которые, во-первых, присущи всем системам без исключения, независимо от их искусственного или естественного происхождения, материального или идеального воплощения; а во-вторых, из множества свойств были бы отобраны и включены в список по признаку их необходимости для построения и использования технологии системного анализа. Полученный список свойств можно назвать дескриптивным (описательным) определением системы.
Необходимы нам свойства системы естественно распадаются на три группы, по четыре свойства в каждой.
Из бесконечного числа свойств систем выделено двенадцать присущих всем системам. Они выделены по признаку их необходимости и достаточности для обоснования, построения и доступного изложения технологии прикладного системного анализа.
Но очень важно помнить, что каждая система отличается от всех других. Это проявляется, прежде всего, в том, что каждое из двенадцати общесистемных свойств в данной системе воплощается в индивидуальной форме, специфической для этой системы. Кроме того, помимо указанных общесистемных закономерностей, каждая система обладает и другими, присущими только ей свойствами.
Прикладной системный анализ нацелен на решение конкретной проблемы. Это выражается в том, что с помощью общесистемной методологии он технологически направлен на обнаружение и использование индивидуальных, часто уникальных особенностей данной проблемной ситуации.
Для облегчения такой работы можно употребить некоторые классификации систем , фиксирующие тот факт, что для разных систем следует использовать разные модели, разную технику, разные теории. Например, Р. Акофф и Д. Гарайедаги предложили различать системы по соотношению объективных и субъективных целей у частей целого: системы технические, человеко-машинные, социальные, экологические. Другая полезная классификация, по степени познанности систем и формализованности моделей, предложена У. Чеклендом: "жесткие" и "мягкие" системы и, соответственно, "жесткая" и "мягкая" методологии, обсужденные в гл. 1.
Итак, можно сказать, что системное видение мира состоит в том, чтобы, понимая его всеобщую системность, приступить к рассмотрению конкретной системы, уделяя основное внимание ее индивидуальным особенностям. Классики системного анализа сформулировали этот принцип афористически: "Думай глобально, действуй локально".
Тарасенко Ф. П. Прикладной системный анализ (наука и искусство решения проблем): Учебник. - Томск; Издательство Томского университета, 2004. ISBN 5-7511-1838-3. Фрагмент
В переводе с греческого слово «система» означает «соединение, целое, составленное из частей». Эти части, или элементы, находятся в единстве, в рамках которого они определенным образом упорядочены, взаимосвязаны, оказывают друг на друга то или иное воздействие.
Управление также обладает свойством системности, поэтому изучение его механизма мы начинаем со знакомства с основными положениями теории систем. В соответствии с ней любая система обладает рядом основных признаков.
Во-первых, как уже говорилось, она представляет собой набор элементов, или отдельных частей, выделенных по тому или иному принципу, являющихся ее структурообразующими факторами и играющих роль подсистем. Последние, хотя и относительно самостоятельны, но различным образом взаимодействуют в рамках системы; в простейшей форме тем, что находятся рядом и граничат друг с другом; более сложными формами взаимодействия является обусловленность (порождение одним элементом другого) и взаимное влияние, оказываемое ими друг на друга. Для сохранения системы такое взаимодействие должно быть гармоничным.
В результате взаимодействия у элементов и формируются общесистемные качества, то есть признаки, свойственные системе в целом и каждому из них в отдельности (например, человеческое тело в целом и каждый его орган осуществляют обменные процессы, имеют нервные клетки, постоянно обновляются и пр.
Свойства элементов (подсистем) определяют место последних во внутренней организации системы и реализуются в их функциях. Это проявляется в определенном влиянии на другие элементы, или объекты, находящиеся вне системы и способные это влияние воспринимать, преобразовывать и изменяться в соответствии с ним.
Во-вторых, система имеет границы, отделяющие ее от окружающей среды. Эти границы могут быть «прозрачными», допускающими проникновение в систему внешних влияний, и «непрозрачными», наглухо отделяющими ее от всего остального мира. Системы, осуществляющие свободный двусторонний обмен энергией, веществом, информацией со средой, получили название открытых; в противном случае говорится о закрытых системах, функционирующих относительно не зависимо от среды.
Если в систему вообще не поступают ресурсы извне, она имеет тенденцию к затуханию (энтропии) и прекращает свое существование (например, часы, если их не завести, останавливаются).
Открытые системы, самостоятельно черпающие необходимые для себя ресурсы из внешней среды, и преобразующие их для удовлетворения своих потребностей, в принципе неиссякаемы. В то же время, недостаточно, или наоборот, чрезмерно активный обмен со средой может систему разрушить (по причине нехватки ресурсов или неспособности их ассимилировать ввиду избыточного количества и разнообразия). Поэтому система должна находиться в состоянии внутреннего равновесия и баланса со средой. Это обеспечивает ее оптимальное приспособление к ней и успешное развитие.
Открытые системы стремятся к постоянным изменениям за счет специализации, дифференциации, интеграции элементов. Это ведет к усложнению связей, совершенствованию самой системы, позволяет достигать целей многими способами (для закрытых возможен только один), но требует дополнительных ресурсов.
В третьих, каждая система имеет определенную структуру, то есть упорядоченную совокупность взаимосвязанных элементов (иногда в обиходе понятие структура используется как синоним понятию организация).
Упорядоченность придает системе внутреннюю организацию, в рамках которой взаимодействие элементов подчиняется определенным принципам, законам. Системы, где такая организация минимальна, называются неупорядоченными, например, толпа на улице. Структура может в той или иной степени зависеть от особенностей самих элементов (например, взаимоотношения в чисто женском, мужском, детском или смешенном коллективах неодинаковы).
В-четвертых, в каждой системе есть некое явное системообразующее отношение или качество, которое в той или иной степени проявляется во всех остальных, обеспечивает их единство и целостность. Если оно определяется природой системы, то называется внутренними, в противном случае - внешним. В то же время, внутренние отношения могут распространяться и на другие системы (например, через подражание, заимствование опыта). Возможность реализации отношений и свойств системы исключительно на данной основе (субстрате) делает ее уникальной. В социальных системах кроме явного системообразующего отношения могут существовать неявные.
В-пятых, каждая система обладает определенными качествами. Многокачественность системы является следствием бесконечности связей и отношений, существующих на различных ее уровнях. Качества проявляются в отношении к другим объектам, причем, неодинаково. Например, один и тот же человек в роли руководителя может кричать на подчиненных и лебезить перед своим непосредственным начальником. Качества системы в определенной степени воздействуют на качество вошедших в них элементов, преобразуют их. Способность достигать этого характеризует силу системы.
В-шестых, системе присуща эмерджентность, то есть появление качественно новых свойств, отсутствующих у ее элементов, или не характерных для них. Таким образом, свойства целого не равны сумме свойств частей, хотя и зависят от них, а объединенные в систему элементы могут терять свойства, присущие им вне системы, или приобретать новые.
Нетождественность суммы качеств элементов качествам системы в целом обусловлена наличием структуры, поэтому структурные преобразования приводят к качественным, но последние могут происходить также и за счет количественных изменений. Таким образом, система может качественно изменяться, не меняя своей структуры, а в рамках одного и того же количественного состава могут существовать несколько качественных состояний.
В-седьмых, система обладает обратной связью, под которой понимается определенная реакция ее в целом или отдельных элементов на импульсы друг друга и внешние воздействия.
Теперь рассмотрим, какими бывают системы.
По характеру связей между элементами системы делятся на централизованные и децентрализованные. В первых все связи осуществляются через один центральный элемент; во вторых они могут происходить без «посредника» напрямую. Системы, где взаимосвязь элементов идет только по одной линии получили название частичных, а по многим - полных. В цепных системах каждый элемент связан не более, чем с двумя другими.
Системы, характеризующиеся преобладанием внутренних связей по сравнению внешним, где центростремительность больше центробежное, а отдельным элементам присущи общие характеристики, получили название целостных.
Системы, сохраняющиеся в целом при изменении или исчезновении одного или нескольких элементов, можно назвать стабильными, устойчивыми. Если при этом возможно восстановление утраченных элементов, то система называется регенеративной.
Изменяющиеся системы динамичны. Их элементы и они в целом могут изменяться линейно, однонаправлено с равной интенсивностью, и тогда будет наблюдаться рост, или нелинейно, разнонаправлено, с неодинаковой интенсивностью, что приводит к их качественным изменениям и развитию. Неизменные системы статичны.
С точки зрения состояния динамичные системы подразделяются на первичные, исходные, или вторичные, уже претерпевшие определенные изменения. Если система не допускает дальнейшего развития, без того, чтобы не преобразоваться в другую, она считается завершенной; если же развитие может продолжаться - незавершенной. Незавершенность может быть субстратной (преобразования могут происходить в основе элементов) и структурной (изменяется состав и соотношение элементов).
Если система сохраняет свои характеристики при изменении субстрата, она называется стационарной.
Система, состоящая из ряда разнородных элементов, называется сложной. Сложность означает, что введение новой единицы в систему не только порождает новые отношения, но и изменяет существующие. Степень сложности зависит также от взаимосвязанности этих элементов и от их числа.
Едва ли не важнейшими разновидностями систем являются механические и органические. Механические системы обладают постоянным набором неизменных элементов, четкими границами, однозначными связями, не способны изменяться и развиваться, функционируют под воздействием внешних импульсов. Выход элемента из механического целого нарушает его функционирование. Наиболее наглядный их пример - часовой механизм.
В механической системе элементы находятся во внешней связи друг с другом, не затрагивающей внутреннего существа каждого из них, и пребывают в безразличной самостоятельности. Они менее зависимы от системы, и вне ее сохраняют в неизменности свое бытие (колесико от часов может продолжительное время играть роль запасной детали).
Органические системы характеризуются противоположными качествами. В них увеличивается зависимость части от целого, а целого от части, наоборот, уменьшается. Причем, чем глубже связь частей, тем больше роль целого по отношению к ним. Кроме того, им присущи такие важные свойства, которых нет у механических систем, как способность к самоорганизации и самовоспроизведению.
В качестве образца органической системы можно привести живые существа или их сообщества. Специфической формой органической системы является социально-экономическая (общество, коллектив, организация и пр.).
Социально-экономические системы всегда являются упорядоченными, целостными, функционально и технологически неоднородными, иерархичными по структуре, динамичными с точки зрения состава и количества элементов. Подсистемы (элементы) в социально-экономических системах выделяются по тем или иным четким критериям, обычно в зависимости от их типа и целей.
Такие системы устойчивы, и в то же время постоянно развиваются, эволюционируют в более сложные образования (хотя иногда могут временно стабилизироваться или деградировать). Это развитие протекает под влиянием противоречивого взаимодействия внешних и внутренних факторов, интенсивность которого весьма различна. Поэтому оно неравномерно, может быть прерывистым, скачкообразным и не всегда предсказуемым.
Небольшие изменения в одном из элементов социальной системы могут привести к значительным последствиям для нее в целом, поэтому с помощью небольших, но продуманных действий в нужном месте и в соответствующее время легко достичь крупных желаемых результатов (теория рычага).
Для того, чтобы социальная система была динамически устойчивой, она должна обладать управляющим элементом, осуществляющим интеграцию ее отдельных звеньев, контроль за их функционированием, поступлением ресурсов, удалением отходов, получаемыми результатами, способным на основе обратной связи корректировать эти процессы. Для успеха саморазвития и самовоспроизведения системы управляющий элемент должен обладать не меньшей степенью сложности, чем управляемый. , — Системный подход, основная цель которого состоит в интеграции элементов организации, является основой современного менеджмента. Он рассматривает любую организацию как целостную совокупность различных видов деятельности и элементов, находящихся в противоречивом единстве и взаимосвязи, в рамках пространственно-временного бытия, в динамике, с учетом историчности, этапности, цикличности развития.
Многим знакома фраза из фильма Эндрю и Лоуренса Вачовски: "Матрица - это система. Она и есть наш враг". Однако стоит разобраться в понятиях, терминах, а также в возможностях и свойствах системы. Так ли она страшна, как ее представляют во многих фильмах и литературных произведениях? О характеристиках и свойствах системы и примерах их проявления пойдет речь в статье.
Слово «система» греческого происхождения (σύστημα), обозначающее в дословном переводе целое, состоящее из соединенных частей. Однако понятие, скрывающееся под этим термином, гораздо многограннее.
Хотя в современной жизни практически все вещи рассматриваются как нельзя дать единственно правильное определение этому понятию. Как ни странно, происходит это из-за проникновения теории систем буквально во все
Еще в начале двадцатого века велись дискуссии о различии свойств линейных систем, исследуемых в математике, логике, от особенностей живых организмов (примером научной обоснованности в данном случае является теория функциональных систем П. К. Анохина). На современном этапе принято выделять ряд значений этого термина, которые образуются в зависимости от анализируемого объекта.
В двадцать первом веке появилось более подробное объяснение греческого термина, а именно: «целостность, состоящая из элементов, которые связаны между собой и находятся в определенных отношениях». Но это общее описание значения слова не отражает свойств системы, анализируемой наблюдателем. В связи с этим понятие будет приобретать новые грани толкования в зависимости от рассматриваемого объекта. Неизменными останутся лишь понятия целостности, основных свойств системы и ее элементов.
В теории систем принято рассматривать целое как взаимодействие и отношения определенных элементов, которые, в свою очередь, являются единицами с определенными свойствами, не подлежащими дальнейшему членению. Параметры рассматриваемой части (или свойства элемента системы), как правило, описываются при помощи:
Стоит обратить внимание на то, что элемент системы не равнозначен понятию «элементарность». Все зависит от масштабов и сложности рассматриваемого объекта.
Если обсуждать систему свойств человека, то элементами будут выступать такие понятия, как сознание, эмоции, способности, поведение, личность, которые, в свою очередь, сами могут быть представлены как целостность, состоящая из элементов. Из этого следует вывод, что элемент может рассматриваться как субсистема рассматриваемого объекта. Начальным этапом в системном анализе и является определение состава «целостности», то есть уточнение всех входящих в нее элементов.
Любые системы не находятся в изолированном состоянии, они постоянно взаимодействуют с окружающей средой. Для того чтобы вычленить какую-либо «целостность», следует выявить все связи, объединяющие элементы в систему.
Что такое связи и как они влияют на свойства системы.
Связь - взаимная зависимость элементов на физическом или смысловом уровне. По значимости можно выделить следующие связи:
Наличие тех или иных связей обусловливает свойства системы, отображает зависимости между конкретными элементами. Так же можно проследить использование ресурсов, необходимых для построения и функционирования системы.
Каждый элемент изначально снабжен определенными ресурсами, которые он может передавать иным участникам процесса или обменивать их. Причем обмен может происходить как внутри системы, так и между системой и внешней средой. Классифицировать ресурсы можно следующим образом:
Поскольку системы обладают определенными свойствами и признаками, их можно подвергнуть классификации, целью которой является выбор соответствующих подходов и средств описания целостности.
Существует категоризация относительно взаимодействия с внешней средой, структуры и пространственно-временных характеристик. Оценку функциональности систем можно производить по следующим критериям (см. таблицу).
Критерии | |
Взаимодействие с внешней средой | Открытые - взаимодействующие с внешней средой Закрытые - проявляющие резистентность по отношению к воздействию внешней среды Комбинированные - содержат оба вида подсистем |
Структура целостности | Простые - включающие небольшое количество элементов и связей Сложные - характеризуются неоднородностью связей, множественностью элементов и разнообразием структур Большие - отличаются множественностью и разнородностью структур и подсистем |
Выполняемые функции | Специализированные - узкая специализация Многофункциональные - структуры, выполняющие несколько функций одновременно Универсальные (например, комбайн) |
Развитие системы | Стабильные - структура и функции неизменны Развивающиеся - имеют высокую сложность, подвергаются структурным и функциональным изменениям |
Организованность системы | Хорошо организованные (можно обратить внимание на свойства информационных систем, для которых характерны четкая организация и ранжированность) Плохо организованные |
Сложность поведения системы | Автоматические - запрограммированный ответ на внешнее воздействие с последующим возвращением к гомеостазу Решающие - основаны на постоянных реакциях на внешние раздражители Самоорганизующиеся - гибкие реакции на внешние раздражители Предвидящие - превосходят внешнюю среду по сложности организации, способна предвидеть дальнейшие взаимодействия Превращающиеся - сложные структуры, не связанные с вещественным миром |
Характер связи между элементами | Детерминированные - состояние системы может быть предсказано для любого момента Стохастические - их изменение носит случайный характер |
Структура управления | Централизованные Децентрализованные |
Назначение системы | Управляющие - свойства системы управления сводятся к регулированию информационных и иных процессов Производящие - характеризуются получением продуктов или услуг Обслуживающие - поддержка работоспособности систем |
Свойством принято называть некоторые характерные признаки и качества элемента или целостности, которые проявляются при взаимодействии с иными объектами. Можно выделить группы свойств, характерные практически для всех существующих общностей. Всего известно двенадцать общих свойств систем, которые разделены на три группы. Информацию смотрите в таблице.
Из названия группы вытекает, что система обладает некоторыми особенностями, которые присущи ей всегда: в любой определенный промежуток времени. То есть это те характеристики, без обладания которыми общность перестает быть таковой.
Целостность - это свойство системы, которое позволяет выделить ее из окружающей среды, определить границы и отличительные черты. Благодаря ему возможно существование устоявшихся связей между элементами в каждый выделенный момент времени, которые позволяют реализовать цели системы.
Открытость - одно из свойств системы, основанное на законе взаимосвязи всего существующего в мире. Суть его в том, что можно найти связи между любыми двумя системами (как входящие, так и выходящие). Как можно заметить, при детальном рассмотрении эти взаимодействия различны (или несимметричны). Открытость свидетельствует о том, что система не существует изолированно от среды и производит обмен ресурсами с ней. Описание этого свойства обычно называют «моделью черного ящика» (со входом, который обозначает влияние среды на целостность, и выходом - влиянием системы на среду).
Внутренняя неоднородность систем. В качестве наглядного примера подойдет рассмотрение свойств нервной системы человека, устойчивость которой обеспечивается многоуровневой, разнородной организацией элементов. Принято рассматривать три основные группы: свойства мозга, отдельных структур нервной системы и конкретных нейронов. Информация о составных частях (или элементах) системы позволяет составить карту иерархических связей между ними. Следует обратить внимание, что в данном случае рассматривается «различимость» частей, а не их «разделимость».
Трудности определения состава системы заключаются в целях исследования. Ведь один и тот же объект можно рассмотреть с точки зрения его ценности, функциональности, сложности внутреннего устройства и т. д. Вдобавок ко всему, большую роль играет умение наблюдателя находить различия элементов системы. Поэтому модель стиральной машины у продавца, технического работника, грузчика, ученого будет абсолютно иной, поскольку перечисленные люди рассматривают ее с разных позиций и с разными установленными целями.
Структурированность - свойство, описывающее взаимосвязи и взаимодействия элементов внутри системы. Связи и отношения элементов составляют модель рассматриваемой системы. Благодаря структурированности поддерживается такое свойство объекта (системы), как целостность.
Если статические свойства - это то, что можно наблюдать в любой отдельно взятый момент времени, то динамические относятся к разряду подвижных, то есть проявляющихся во времени. Это изменения состояния системы на протяженности определенного отрезка времени. Наглядным примером может служить смена времен года на каком-либо наблюдаемом участке или улице (статические свойства остаются, но видны воздействия динамических). Какие свойства системы относятся к рассматриваемой группе?
Функциональность - определяется воздействием системы на среду. Характерной особенностью является субъективность исследователя в выделении функций, продиктованная поставленными целями. Так, автомобиль, как известно, является «средством передвижения» - это его основная функция для потребителя. Однако покупатель при выборе может руководствоваться и такими критериями, как надежность, комфортность, престижность, дизайн, а также наличие сопутствующих документов и т. д. В данном случае раскрывается многофункциональность такой системы, как машина, и субъективность приоритетов функциональности (поскольку будущий водитель выстроил свою систему главных, второстепенных и незначительных функций).
Стимулируемость - проявляется повсеместно как адаптирование к внешним условиям. Ярким примером являются свойства нервной системы. Воздействие внешнего раздражителя или среды (стимула) на объект способствует изменению или коррекции поведения. Этот эффект подробно описал в своих исследованиях Павлов И. П., а в теории системного анализа он называется стимулируемостью.
Изменчивость системы со временем. Если система функционирует, неизбежны изменения как во взаимодействии со средой, так и в осуществлении внутренних связей и отношений. Можно выделить следующие виды изменчивости:
Характер проявления перечисленных изменений может быть различен. Обязательным является условие учета данного свойства при анализе и планировании системы.
Существование в изменяющейся среде. Как система, так и среда, в которой она находится, подвержены изменениям. Для функционирования целостности следует определиться с соотношением скорости изменений внутренних и внешних. Они могут совпадать, могут различаться (опережение или отставание). Важно правильно определить соотношение с учетом особенностей системы и окружающей среды. Наглядным примером может служить вождение автомобиля в экстремальных условиях: водитель действует либо на опережение, либо в соответствии с обстановкой.
Описывает отношения системы и среды с точки зрения общего понимания целостности.
Эмерджентность - слово английского происхождения, переводится как «возникать». Термином обозначают появление некоторых свойств, которые проявляются только в системе благодаря наличию связей определенных элементов. То есть речь идет о возникновении свойств, которые нельзя объяснить суммой свойств элементов. Например, детали автомобиля ездить и тем более осуществлять перевозки не в состоянии, но собранные в систему - способны быть средством передвижения.
Неразделимость на части - это свойство, по логике вещей, вытекает из эмерджентности. Удаление какого-либо элемента из системы сказывается на ее свойствах, внутренних и внешних связях. В то же время элемент, «отправленный в свободное плавание», приобретает новые свойства и перестает быть «звеном цепи». Например, шина автомобиля на территории бывшего СССР частенько появляется на клумбах, спортивных площадках, «тарзанках». Но изъятая из системы автомобиля, она утеряла свои функции и стала совершенно иным объектом.
Ингерентность - английский термин (Inherent), который переводится как «неотъемлемая часть чего-либо». От степени «включенности» элементов в систему зависит выполнение ею возложенных на нее функций. На примере свойств элементов в периодической системе Менделеева можно удостовериться в важности учета ингерентности. Так, период в таблице строится исходя из свойств элементов (химических), в первую очередь заряда ядра атома. Свойства вытекают из ее функций, а именно классификация и упорядочение элементов с целью предсказания (или нахождения) новых звеньев.
Целесообразность - любая искусственная система создается с определенной целью, будь то решение какой-либо проблемы, развитие заданных свойств, выпуск требуемой продукции. Именно цель диктует выбор структуры, состава системы, а также связей и отношений между внутренними элементами и внешней средой.
В статье изложены двенадцать системных свойств. Классификация систем, однако, гораздо разнообразнее и проводится в соответствии с целью, которую преследует исследователь. Каждая система обладает свойствами, которые отличают ее от множества других общностей. Кроме того, перечисленные свойства могут проявляться в большей или меньшей степени, что продиктовано внешними и внутренними факторами.
План лекции:
1. Понятие системы, свойства системы.
2. Классификация системы.
СИСТЕМА – ЭТО СОВОКУПНОСТЬ ЭЛЕМЕНТОВ, ОБЪЕДИНЁННЫХ ОБЩЕЙ ФУНКЦИОНАЛЬНОЙ СРЕДОЙ И ЦЕЛЬЮ ФУНКЦИОНИРОВАНИЯ.
Термин система употребляется очень широко не только в научных исследованиях, но и в любой области практической деятельности и в бытовом разговоре. Повседневно мы употребляем выражения ”солнечная система”, ”система взглядов”, ”система машин”, ”система севооборотов”, ”система земледелия” и т. д. Система – одно из фундаментальных, универсальных понятий современной научной методологии познания. Содержательное определение сущности понятия системы, как научной категории, требует уровня определённых абстракций.
В первом приближении самое простое определение понятия системы следует из его происхождения от греческого слова (system) – нечто целое, составленное из частей. Определение системы, как некоторого целостного множества элементов, предполагает наличие следующих основных признаков:
Наличие множества структурных элементов, образующих систему (рассматривается некоторое множество);
Связность, упорядоченность элементов;
Целенаправленный и целесообразный характер взаимодействия элементов системы, то есть наличие общесистемной цели;
Относительная обособленность системы от внешней среды (то есть, возможность её идентифицировать как единое целое);
Способность реализовать определённые функции (способность достижения цели системы), что обеспечивается информационными процессами управления.
Системе любой природы присущи 3 свойства.
1. Важнейшим и определяющим свойством системы является её свойство целостности . Свойство целостности возникает из специфических особенностей взаимодействия структурных элементов для достижения общесистемных целей. Система как целое всегда обладает качественно новыми свойствами, которых не было у первичных элементов системы, и эти новые свойства не являются простой суммой характеристик составляющих частей системы. Появление качественно новых свойств, не присущих отдельным элементам системы, получило название эмерджентности .
Например, биологическая система ”лес” обладает свойствами, которые невозможно получить как сумму свойств и характеристик отдельных деревьев, кустарников, трав, произрастающих в этом лесу, а также животного мира, обитающего здесь же.
2. Свойства организованности системы. Существенное значение в оценке организованности системы имеет характер структуры и сложности взаимосвязей между элементами. Чем более высоко организована система, тем сложнее в ней взаимосвязи. Свойство организованности системы проявляются в изменении соотношения между нарастающей сложностью системы и совершенствованием её структуры. Совершенствование структуры осуществляется путём организации новых форм взаимосвязей и взаимодействий между элементами системы. Управление системой требует её соответствующей организации. Благодаря совершенствованию структуры и организованности системы повышается её управляемость.
3. Каждой системе свойственна определённая степень сложности. Степень сложности определяется числом элементов, составляющих систему, степенью разветвления её внутренней структуры, характером функционирования системы, возможностью описания системы на некотором языке исследования. По степени сложности принято различать системы: простые, сложные, очень сложные.
К основным системным понятиям можно отнести: функциональную среду, элементы системы, компоненты системы, структуру системы.
ФУНКЦИОНАЛЬНАЯ СРЕДА СИСТЕМЫ – ЭТО ХАРАКТЕРНАЯ ДЛЯ СИСТЕМЫ СОВОКУПНОСТЬ ЗАКОНОВ, АЛГОРИТМОВ И ПАРАМЕТРОВ, ПО КОТОРЫМ ОСУЩЕСТВЛЯЕТСЯ ВЗАИМОДЕЙСТВИЕ (ОБМЕН) МЕЖДУ ЭЛЕМЕНТАМИ СИСТЕМЫ И ФУНКЦИОНИРОВАНИЕ (РАЗВИТИЕ) СИСТЕМЫ В ЦЕЛОМ.
ЭЛЕМЕНТ СИСТЕМЫ – ЭТО УСЛОВНО НЕДЕЛИМАЯ, САМОСТОЯТЕЛЬНАЯ ФУНКЦИОНИРУЮЩАЯ ЧАСТЬ СИСТЕМЫ.
КОМПОНЕНТ СИСТЕМЫ – ЭТО МНОЖЕСТВО ОТНОСИТЕЛЬНО ОДНОРОДНЫХ ЭЛЕМЕНТОВ, ОБЪЕДИНЁННЫХ ОБЩИМИ ФУНКЦИЯМИ ПРИ ОБЕСПЕЧЕНИИ ВЫПОЛНЕНИЯ ОБЩИХ ЦЕЛЕЙ РАЗВИТИЯ СИСТЕМЫ
СТРУКТУРА СИСТЕМЫ – ЭТО СОВОКУПНОСТЬ СВЯЗЕЙ, ПО КОТОРЫМ ОБЕСПЕЧИВАЕТСЯ ЭНЕРГО-, МАССО- И ИНФОРМАЦИОННЫЙ ОБМЕН МЕЖДУ ЭЛЕМЕНТАМИ СИСТЕМЫ, ОПРЕДЕЛЯЮЩАЯ ФУНКЦИОНИРОВАНИЕ СИСТЕМЫ В ЦЕЛОМ И СПОСОБЫ ЕЁ ВЗАИМОДЕЙСТВИЯ С ВНЕШНЕЙ СРЕДОЙ.
Функциональную среду организма составляет совокупность законов физиологии. Эти законы ограничивают возможную динамику взаимосвязей между элементами организма некоторыми правилами, не позволяющими данным элементам развиваться во вред целому – организму. Нарушение функциональной среды вызывает болезнь организма.
Основная цель функционирования любого организма очевидна – выживание и обеспечение размножения (способствующего выживанию, но не индивидуальному, а групповому).
Элементами системы в рассмотренном примере являются клетки различных органов и тканей организма.
Компоненты системы – различные органы, в свою очередь состоящие из клеток, основу которых составляют так называемые специализированные клетки, обеспечивающие функционирование данных органов.
Структуру рассматриваемой системы – организма, составляет совокупность связей между органами и тканями. Осуществляются эти связи в процессе функционирования дыхательной, кровеносной, нервной, выделительной и других систем организма.
Любая система, независимо от её природы, существует в определённой среде – физической, социальной, экономической и т. д., постоянно взаимодействуя с ней. Чтобы исследовать систему, вначале её нужно вычленить из среды. Определение системы означает её распознавание (идентификация), выделение из окружающей среды как целого, относительно обособленного и самостоятельного, способностью достигать заданные цели.
Вычленение системы из окружающей среды равнозначно разбиению явления на две части – систему и внешнюю по отношению к ней среду. Постоянное взаимодействие системы и среды конкретно выражается в обмене веществом, энергией, информацией. Так, засеянное клевером поле севооборота, как система, испытывает влияние таких факторов внешней среды, как солнечная радиация, выпадающие осадки, обработка ядохимикатами и т. д. В свою очередь, совокупность растений данного поля оказывает влияние на среду, поглощая и отражая солнечный свет и т. д. Поскольку взаимодействие системы и среды носит всеобщий универсальный характер, рассмотрим формализованные подходы к анализу и оценки их взаимодействия, введя некоторые общие понятия и методические приёмы.
Среда оказывает вещественные, энергетические и информационные взаимодействия на систему через соответствующие элементы системы, которые будем называть входами системы , а факторы внешней среды, осуществляющие эти взаимодействия, входными величинами, или импульсами. Так, для вегетирующего растения входными величинами (факторами внешней среды) являются солнечная радиация, температура окружающего воздуха, наличие углекислого газа и кислорода, почвенной влаги, растворённых в ней элементов минерального питания, различные механические взаимодействия (ветра, насекомых и т. д.). Эти входные величины оказывают воздействие на систему “растение” через соответствующие элементы системы, образующие вход.
Система в свою очередь оказывает влияние на среду через определённые элементы, образующие выход системы .
Факторы, определяющие воздействие системы на среду, называются выходными величинами или реакциями системы на соответствующие импульсы на входе. Так, выходными величинами системы “растение” являются факторы, определяющие нарастание органической массы, плодоношение, выделение кислорода при фотосинтезе и углекислого газа в процессе дыхания и т. п.
Понятие “вход” и ”выход” системы, “импульс” и “реакция” являются общепринятыми, универсальными для любых систем, независимо от их природы и предметной области исследований.
При исследовании системы входные и выходные величины целесообразно рассматривать как математические переменные, могущие принимать конкретные значения.
Термин «система» употребляется в различных науках. Соответственно, разных ситуациях применяются различные определения системы: от философских до формальных. Для целей курса лучше всего подходит следующее определение: система – совокупность элементов, объединённых связями и функционирующих совместно для достижения цели.
Системы характеризуются рядом свойств, основные из которых делятся на три группы: статические, динамические и синтетические.
Статическими свойствами называются особенности некоторого состояния системы. Это то чем обладает система в любой фиксированный момент времени.
Целостность. Всякая система выступает как нечто единое, целое, обособленное, отличающееся от всего остального. Это свойство называется целостностью системы. Оно позволяет разделить весь мир на две части: систему и окружающую среду.
Открытость. Выделяемая, отличаемая от всего остального система не изолирована от окружающей среды. Наоборот, они связаны и обмениваются различными видами ресурсов (веществом, энергией, информацией и т.д.). Эта особенность обозначается термином «открытость».
Связи системы со средой носят направленный характер: по одним среда влияет на систему (входы системы), по другим система оказывает влияние на среду, что-то делает в среде, что-то выдаёт в среду (выходы системы). Описание входов и выходов системы называется моделью чёрного ящика. В такой модели отсутствует информация о внутренних особенностях системы. Несмотря на кажущуюся простоту, такой модели зачастую вполне достаточно для работы с системой.
Во многих случаях при управлении техникой или людьми информация только о входах и выходах системы позволяет успешно достигать цели. Однако для этого модель должна отвечать определённым требованиям. Например, пользователь может испытывать затруднения, если не будет знать, что в некоторых моделях телевизоров кнопку включения нужно не нажимать, а вытягивать. Поэтому для успешного управления модель должна содержать всю информацию, необходимую для достижения цели. При попытке удовлетворить это требование может возникнуть четыре типа ошибок, которые проистекают из того, что модель всегда содержит конечное число связей, тогда как у реальной системы количество связей неограниченно.
Ошибка первого рода возникает в том случае, когда субъект ошибочно рассматривает связь как существенную и принимает решение о её включении в модель. Это приводит к появлению в модели лишних, ненужных элементов. Ошибка второго рода, напротив, совершается тогда, когда принимается решение об исключении из модели якобы несущественной связи, без которой, на самом деле, достижение цели затруднено или вообще невозможно.
Ответ на вопрос о том, какая из ошибок хуже, зависит от контекста, в котором он задаётся. Понятно, что использование модели, содержащей ошибку, неизбежно ведёт к потерям. Потери могут быть небольшими, приемлемыми, нетерпимыми и недопустимыми. Урон, наносимый ошибкой первого рода связан с тем, что информация, внесённая ею, лишняя. При работе с такой моделью придётся тратить ресурсы на фиксацию и обработку лишней информации, например, тратить на неё память ЭВМ и время обработки. На качестве решения это, возможно, и не скажется, а на стоимости и своевременности скажется обязательно. Потери от ошибки второго рода – урон от того, что информации для полного достижения цели не хватит, цель не может быть достигнута в полной мере.
Теперь ясно, что хуже та ошибка, потери от которой больше, а это зависит от конкретных обстоятельств. Например, если время является критическим фактором, то ошибка первого рода становится гораздо более опасной, чем ошибка второго рода: вовремя принятое, пусть не наилучшее, решение предпочтительнее оптимального, но запоздавшего.
Ошибкой третьего рода принято считать последствия незнания. Для того, чтобы оценивать существенность некоторой связи, нужно знать, что она вообще есть. Если это не известно, то вопрос о включении связи в модель вообще не стоит. В том случае, если такая связь несущественна, то на практике её наличие в реальности и отсутствие в модели будет незаметно. Если же связь существенна, то возникнут трудности, аналогичные трудностям при ошибке второго рода. Разница состоит в том, что ошибку третьего рода сложнее исправить: для этого необходимо добывать новые знания.
Ошибка четвёртого рода возникает при ошибочном отнесении известной существенной связи к числу входов или выходов системы. Например, точно установлено, что в Англии 19-го века здоровье мужчин, носящих цилиндры, значительно превосходило здоровье мужчин, носящих кепки. Навряд ли из этого следует, что вид головного убора можно рассматривать как вход для системы прогнозирования состояния здоровья.
Внутренняя неоднородность систем, раличимость частей. Если заглянуть внутрь «чёрного ящика», то выяснится, что система неоднородна, не монолитна. Можно обнаружить, что различные качества в разных частях системы отличаются. Описание внутренней неоднородности системы сводится к обособлению относительно однородных участков, проведению границ между ними. Так появляется понятие о частях системы. При более детальном рассмотрении оказывается, что выделенные крупные части тоже неоднородны, что требует выделять ещё более мелкие части. В результате получается иерархическое описание частей системы, которое называется моделью состава.
Информация о составе системы может использоваться для работы с системой. Цели взаимодействия с системой могут быть различными, в связи с чем могут различаться и модели состава одной и той же системы. На первый взгляд различить части системы нетрудно, они «бросаются в глаза». В некоторых системах части возникают произвольно, в процессе естественного роста и развития (организмы, социумы и т.д.). Искусственные системы заведомо собираются из заранее известных частей (механизмы, здания и т.д.). Есть и смешанные типы систем, такие как заповедники, сельскохозяйственные системы. С другой стороны, с точки зрения ректора, студента, бухгалтера и хозяйственника университет состоит из разных частей. Самолёт состоит из разных частей с точки зрения пилота, стюардессы, пассажира. Трудности создания модели состава можно представить тремя положениями.
Во-первых, целое можно делить на часть по-разному. При этом способ деления определяется поставленной целью. Например, состав автомобиля по разному представляют начинающим автолюбителям, будущим профессиональным водителям, слесарям, готовящимся к работе в автосервисе, продавцам в автомагазинах. Естественно задать вопрос о том, существуют ли части системы «на самом деле»? Ответ содержится в формулировке рассматриваемого свойства: речь идёт о различимости, а не о разделимости частей. Можно различать нужные для достижения цели части системы, но нельзя разделять их.
Во-вторых, количество частей в модели состава зависит и от того, на каком уровне остановить дробление системы. Части на конечных ветвях получающегося иерархического дерева называются элементами. В различных обстоятельствах прекращение декомпозиции производится на разных уровнях. Например, при описании предстоящих работ приходится давать опытному работнику и новичку инструкции разной степени подробности. Таким образом, модель состава зависит от того, что считать элементарным. Встречаются случаи, когда элемент имеет природный, абсолютный характер (клетка, индивид, фонема, электрон).
В-третьих, любая система является частью большей системы, а иногда и нескольких систем сразу. Такую метасистему также можно делить на подсистемы по-разному. Это означает, что внешняя граница системы имеет относительный, условный характер. Определение границ системы производится с учётом целей субъекта, который будет использовать модель системы.
Структурированность. Свойство структурированности заключается в том, что части системы не изолированы, не независимы друг от друга; они связаны между собой, взаимодействуют друг с другом. При этом свойства системы существенно зависят от того, как именно взаимодействуют её части. Поэтому так частот важна информация о связях элементов системы. Перечень существенных связей между элементами системы называется моделью структуры системы. Наделённость любой системы определённой структурой и называется структурированностью.
Понятие структурированности дальше углубляет представление о целостности системы: связи как бы скрепляют части, удерживают их как целое. Целотность, отмеченная ранее как внешнее свойство, получает подкрепляющее объяснение изнутри системы – через структуру.
При построении модели структуры также встречаются определённые трудности. Первая из них связана с тем, что модель структуры определяется после того, как выбирается модель состава, и зависит от того, каков именно состав системы. Но даже при фиксированном составе модель структуры вариабельно. Связано это с возможностью по-разному определить существенность связей. Например, современному менеджеру рекомендуется наряду с формальной структурой его организации учитывать существование неформальных отношений между работниками, которые тоже влияют на функционирование организации. Вторая трудность проистекает из того, что каждый элемент системы, в свою очередь, представляет собой «маленький чёрный ящичек». Так что все четыре типа ошибок возможны при определении входов и выходов каждого элемента, включаемого в модель структуры.
Статьи по теме: | |
Отделы водорослей К какому царству относятся сине зеленые водоросли
Среди существующих ныне организмов встречаются такие, о принадлежности... Что такое система вообще
В силу того, что системный анализ направлен на решение любых проблем... Курс выживания в дикой природе Подмосковья: как это было
В мае 2012 года в средствах массовой информации появилась информация о... |