Выбор читателей
Популярные статьи
1. Первые два признака равенства прямоугольных треугольников.
Для равенства двух треугольников достаточно, чтобы три элемента одного треугольника были равны соответствующим элементам другого треугольника, при этом непременно в число этих элементов должна входить хотя бы одна сторона.
Так как все прямые углы равны между собой, то прямоугольные треугольники уже имеют по одному равному элементу, именно по одному прямому углу.
Отсюда следует, что прямоугольные треугольники равны:
если катеты одного треугольника соответственно равны катетам другого треугольника (рис. 153);
если катет и прилежащий острый угол одного угольника соответственно равны катету и прилежащему острому углу другого треугольника (рис. 154).
Докажем теперь две теоремы, устанавливающие ещё два признака равенства прямоугольных треугольников.
Чтобы доказать эту теорему, построим два прямоугольных гольника ABC и А’В’С’, у которых углы А и А’ равны, гипотенузы АВ и А’В’ также равны, а углы С и С’ - прямые (рис. 157).
Наложим треугольник А’В’С’на треугольник ABC так, чтобы вершина А’ совпала с вершиной А, гипотенуза А’В’ - с равной гипотенузой АВ. Тогда вследствие равенства углов A и А’ катет А’С’ пойдёт по катету АС; катет В’С’ совместится с катетом ВС: оба они - перпендикуляры, проведённые к одной прямой АС из одной точки В. Значит, вершины С и С’ совместятся.
Треугольник ABC совместился с треугольником А’В’С’.
Следовательно, \(\Delta\)АВС = \(\Delta\)А’В’С’.
Эта теорема даёт 3-й признак равенства прямоугольных треугольников (по гипотенузе и острому углу).
Теорема 2. Если гипотенуза и катет одного треугольника соответственно равны гипотенузе и катету другого треугольника, то такие прямоугольные треугольники равны.
Чтобы доказать это, построим два прямоугольных треугольника АВС и А’В’С’, у которых углы С и С’ - прямые, катеты АС и A’C’ равны, гипотенузы АВ и А’В’ также равны (рис. 158).
Проведём прямую MN и отметим на ней точку С, из этой точки проведём перпендикуляр СК к прямой MN. Затем прямой угол треугольника ABC наложим на прямой угол КСМ так, чтобы вершины их совместились и катет АС пошёл по лучу СК, тогда катет ВС пойдёт по лучу СМ. Прямой угол треугольника А’В’С’ наложим на прямой угол KCN так, чтобы вершины их совместились и катет А’С’ пошёл по лучу СК, тогда катет С’В’ пойдёт по лучу CN. Вершины А и А’ совпадут вследствие равенства катетов АС и А’С’.
Треугольники АВС и А’В’С’ составят вместе равнобедренный треугольник ВАВ’, в котором АС окажется высотой и биссектрисой, а значит и осью симметрии треугольника ВАВ’. Из этого следует, что \(\Delta\)АВС = \(\Delta\)А’В’С’.
Эта теорема дает 4-й признак равенства прямоугольных треугольников (по гипотенузе и катету).
Итак, все признаки равенства прямоугольных треугольников:
1. Если два катета одного прямоугольного треугольника соответственно равны двум катетам другого прямоугольного треугольника, то такие прямоугольные треугольники равны2. Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого прямоугольного треугольника, то такие прямоугольные треугольники равны
3. Если катет и противолежащий острый угол одного прямоугольного треугольника соответственно равны катету и противолежащему острому углу другого прямоугольного треугольника, то такие прямоугольные треугольники равны
4. Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие прямоугольные треугольники равны
5. Если катет и гипотенуза одного прямоугольного треугольника соответственно равны катету и гипотенузе другого прямоугольного треугольника, то такие прямоугольные треугольники равны
На самом деле все совсем не так страшно. Конечно, «настоящее» определение синуса, косинуса, тангенса и котангенса нужно смотреть в статье . Но очень не хочется, правда? Можем обрадовать: для решения задач про прямоугольный треугольник можно просто заполнить следующие простые вещи:
А что же угол? Есть ли катет, который находится напротив угла, то есть противолежащий (для угла) катет? Конечно, есть! Это катет!
А как же угол? Посмотри внимательно. Какой катет прилегает к углу? Конечно же, катет. Значит, для угла катет - прилежащий, и
А теперь, внимание! Посмотри, что у нас получилось:
Видишь, как здорово:
Теперь перейдём к тангенсу и котангенсу.
Как это теперь записать словами? Катет каким является по отношению к углу? Противолежащим, конечно - он «лежит» напротив угла. А катет? Прилегает к углу. Значит, что у нас получилось?
Видишь, числитель и знаменатель поменялись местами?
И теперь снова углы и совершили обмен:
Давай вкратце запишем всё, что мы узнали.
![]() |
Теорема Пифагора: |
Главная теорема о прямоугольном треугольнике - теорема Пифагора.
Кстати, хорошо ли ты помнишь, что такое катеты и гипотенуза? Если не очень, то смотри на рисунок - освежай знания
Вполне возможно, что ты уже много раз использовал теорему Пифагора, а вот задумывался ли ты, почему же верна такая теорема. Как бы её доказать? А давай поступим, как древние греки. Нарисуем квадрат со стороной.
Видишь, как хитро мы поделили его стороны на отрезки длин и!
А теперь соединим отмеченные точки
Тут мы, правда ещё кое что отметили, но ты сам посмотри на рисунок и подумай, почему так.
Чему же равна площадь большего квадрата?
Правильно, .
А площадь меньшего?
Конечно, .
Осталась суммарная площадь четырех уголков. Представь, что мы взяли их по два и прислонили друг к другу гипотенузами.
Что получилось? Два прямоугольника. Значит, площадь «обрезков» равна.
Давай теперь соберем всё вместе.
Преобразуем:
Вот и побывали мы Пифагором - доказали его теорему древним способом.
Для прямоугольного треугольника выполняются следующие соотношения:
Синус острого угла равен отношению противолежащего катета к гипотенузе
Косинус острого угла равен отношению прилежащего катета к гипотенузе.
Тангенс острого угла равен отношению противолежащего катета к прилежащему катету.
Котангенс острого угла равен отношению прилежащего катета к противолежащему катету.
И ещё раз всё это в виде таблички:
Это очень удобно!
I. По двум катетам
II. По катету и гипотенузе
III. По гипотенузе и острому углу
IV. По катету и острому углу
a)
b)
Внимание! Здесь очень важно, чтобы катеты были «соответствующие». Например, если будет так:
То ТРЕУГОЛЬНИКИ НЕ РАВНЫ , несмотря на то, что имеют по одному одинаковому острому углу.
Нужно, чтобы в обоих треугольниках катет был прилежащим, или в обоих - противолежащим .
Ты заметил, чем отличаются признаки равенства прямоугольных треугольников от обычных признаков равенства треугольников?
Загляни в тему « и обрати внимание на то, что для равенства «рядовых» треугольников нужно равенство трех их элементов: две стороны и угол между ними, два угла и сторона между ними или три стороны.
А вот для равенства прямоугольных треугольников достаточно всего двух соответственных элементов. Здорово, правда?
Примерно такая же ситуация и с признаками подобия прямоугольных треугольников.
I. По острому углу
II. По двум катетам
III. По катету и гипотенузе
Почему это так?
Рассмотрим вместо прямоугольного треугольника целый прямоугольник.
Проведём диагональ и рассмотрим точку - точку пересечения диагоналей. Что известно про диагонали прямоугольника?
И что из этого следует?
Вот и получилось, что
Запомни этот факт! Очень помогает!
А что ещё более удивительно, так это то, что верно и обратное утверждение.
Что же хорошего можно получить из того, что медиана, проведенная к гипотенузе, равна половине гипотенузы? А давай посмотрим на картинку
Посмотри внимательно. У нас есть: , то есть расстояния от точки до всех трёх вершин треугольника оказались равны. Но в треугольнике есть всего одна точка, расстояния от которой о всех трёх вершин треугольника равны, и это - ЦЕНТР ОПИСАННОЙ ОКРУЖНОСТИ. Значит, что получилось?
Вот давай мы начнём с этого «кроме того...».
Посмотрим на и.
Но у подобных треугольников все углы равны!
То же самое можно сказать и про и
А теперь нарисуем это вместе:
Какую же пользу можно извлечь из этого «тройственного» подобия.
Ну, например - две формулы для высоты прямоугольного треугольника.
Запишем отношения соответствующих сторон:
Для нахождения высоты решаем пропорцию и получаем первую формулу "Высота в прямоугольном треугольнике" :
Ну вот, теперь, применяя и комбинируя эти знания с другими, ты решишь любую задачу с прямоугольным треугольником!
Итак, применим подобие: .
Что теперь получится?
Опять решаем пропорцию и получаем вторую формулу :
Обе эти формулы нужно очень хорошо помнить и применять ту, которую удобнее.
Запишем их ещё раз
Теорема Пифагора:
В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов: .
Признаки равенства прямоугольных треугольников:
Признаки подобия прямоугольных треугольников:
Синус, косинус, тангенс, котангенс в прямоугольном треугольнике
Высота прямоугольного треугольника: или.
В прямоугольном треугольнике медиана , проведённая из вершины прямого угла, равна половине гипотенузы: .
Площадь прямоугольного треугольника:
Разделы: Математика
Тема: “Признаки равенства прямоугольных треугольников”
Цель: закрепление знаний (свойства прямоугольных треугольников), знакомство с некоторыми признаками равенства прямоугольных треугольников.
1. Ответить на вопросы:
Рисунок 1.
Составили слово “признак”.
III. Изучение нового материалаИзучая треугольники, мы говорим, что он обладает некоторыми свойствами и признаками. А какие признаки равенства треугольников вам известны? Мы сформулировали и доказали свойства прямоугольных треугольников, а сегодня рассмотрим признаки равенства прямоугольных треугольников, будем решать задачи с их применением.
Доказывая равенство треугольников, сколько пар соответственно равных элементов отыскивали? А возможно ли доказать равенство прямоугольных треугольников по двум катетам?
Перед вами два прямоугольных треугольника АВС и А 1 В 1 С 1 , у них соответственно равны катеты. Докажите, если это возможно, их равенство.
№1. (По двум катетам)
Рисунок 2.
Дано: АВС и А 1 В 1 С 1 , В=В 1 =90 0 , АВ = А 1 В 1 , ВС = В 1 С 1
Доказать: АВС = А 1 В 1 С 1
Как прозвучит признак? (Затем задача №1)
№2. (По катету и прилежащему к нему острому углу)
Рисунок 3.
Дано: АВС и А 1 В 1 С 1 , В=В 1 =90 0 , ВС = В 1 С 1, С= С 1
Доказать: АВС = А 1 В 1 С 1
Как прозвучит признак? (Затем задача №2)
№3. (По гипотенузе и острому углу)
Рисунок 4.
Дано: АВС и А 1 В 1 С 1 , В=В 1 =90 0 , АС = А 1 С 1, А= А 1
Доказать: АВС = А 1 В 1 С 1
Как прозвучит признак? (Затем задача №3)
Задачи. Найти равные треугольники и доказать их равенство.
Рисунок 5.
IV. Закрепление изученного на уроке.Решить следующую задачу.
Рисунок 6.
Дано: АВС, А 1 В 1 С 1 , DAB=CBA=90 0 , АD = BD
Доказать: CAB=DBA.
Обсуждение в четверках (3 мин).
Зачем задача из учебника №261 с записью.
Рисунок 7.
Дано: АВС – равнобедренный, AD и CE – высота АВС
Доказать: AD = CE
Доказательство:
П.35 (три признака), №261 (доказать, что АОС - равнобедренный), №268 (признак равенства прямоугольных треугольников по катету и противолежащему углу).
На следующем уроке геометрии мы продолжим знакомство с признаками равенства прямоугольных треугольников. Отметки выставлю также в следующий раз по результатам за 2 урока.
Дополнительно. Найти равные треугольники.
Билет № 14
Многоугольник. Элементы многоугольника. Виды многоугольников. Сумма углов выпуклого многоугольника.
Рассмотрим фигуру, составленную из отрезков АВ, ВС, CD, ..., EF, FA так, что смежные отрезки (т. е. отрезки АВ и ВС, ВС и CD, ..., FA и АВ) не лежат на одной прямой, а несмежные отрезки не имеют общих точек. Такая фигура называется многоугольником. Точки А, В, С, ..., Е, F называются вершинами, а отрезки АВ, ВС, CD, ..., EF, FA- сторонами многоугольника.
Сумма длин всех сторон называется периметром многоугольника.
Многоугольник с п вершинами называется п -угольником.
Две вершины многоугольника, принадлежащие одной стороне, называются соседними. Отрезок, соединяющий любые две несоседние вершины, называется диагональю многоугольника.
Любой многоугольник разделяет плоскость на две части, одна из которых называется внутренней, а другая - внешней областью многоугольника.
Многоугольник называется выпуклым, если он лежит по одну сторону от каждой прямой, проходящей через две его соседние вершины. (Многоугольник ABCD – выпуклый, остальные не выпуклые)
Сумма углов выпуклого п -угольника равна (п -2) 180°.
Следствия: 1)Сумма углов любого треугольника равна 180 0
2) Сумма углов любого четырехугольника равна 360 0
Билет № 15
Доказать одно из свойств параллелограмма.
1°. В параллелограмме противоположные стороны равны и противоположные углы равны.
2°. Диагонали параллелограмма точкой пересечения делятся пополам.
Теорема Пифагора.
Теорема: В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.
Справедлива теорема, обратная теореме Пифагора
Теорема : Если квадрат одной стороны треугольника равен сумме квадратов двух других сторон, то треугольник прямоугольный.
С помощью этой теоремы, зная стороны треугольника, можно определять, является ли он прямоугольным
2. Синус, косинус, тангенс острого угла прямоугольного треугольника. Значения синуса, косинуса, тангенса и котангенса 30 0 , 45 0 , 60 0 .
Определение : Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
Определение : Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
Определение : Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему катету.
30 0 | 45 0 | 60 0 | |
Sin A | |||
Cos A | |||
Tg A |
Билет № 17
Билет № 18
теорема: Если 3 стороны одного треугольника пропорциональны 3 сторонам другого, то такие треугольники подобны.
Билет № 14
Признаки равенства прямоугольных треугольников. Доказательство одного из них.
Существует четыре признака равенства прямоугольных треугольников:
Если катеты одного прямоугольного треугольника соответственно равны катетам другого, то такие треугольники равны. (АС=А 1 С 1 , ВС=В 1 С 1)
Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого, то такие треугольники равны. (например, АС=А 1 С 1 , ÐА=ÐА 1)
Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого, то такие треугольники равны. (например, АВ= A 1 B 1 , ÐА=ÐА 1)
Если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого, то такие треугольники равны. (например, АВ= A 1 B 1 , АС=А 1 С 1)
Докажем признак по гипотенузе и острому углу.
Статьи по теме: | |
Отделы водорослей К какому царству относятся сине зеленые водоросли
Среди существующих ныне организмов встречаются такие, о принадлежности... Что такое система вообще
В силу того, что системный анализ направлен на решение любых проблем... Курс выживания в дикой природе Подмосковья: как это было
В мае 2012 года в средствах массовой информации появилась информация о... |