Выбор читателей
Популярные статьи
These are acquired from disenchanting epic gear with an iLvl of 650 and above.
Currently it is unknown whether these can also be gained from combining 5 Осколки азурита , it is however quite likely.
how do you get the recipe with 3 charges? and is it the same way for other professions?
I"m not really interested in undercutting goblins on the AH, but I also want to find a way to put these to use that translates directly into gold.
В 2012 году лауреат Нобелевской премии по физике Фрэнк Вильчек предположил существование нового типа кристалла. Хотя большинство кристаллов имеют структуру, повторяющуюся в двух или трех измерениях, Вильчек представил концепцию кристалла, структура которого воспроизводится четыре раза: три из них соответствуют измерениям пространства, а четвертое — измерению времени. Он назвал эту гипотетическую структуру «кристаллом времени», и лишь в прошлом году ученым удалось выяснить, как можно синтезировать их в лабораторных условиях.
Недавно опубликованные исследования показали, что пресловутые кристаллы времени существуют не только как продукт лабораторной деятельности ученых. Оказалось, что подобные структуры могут формироваться и в естественной среде, при этом сам процесс намного проще, чем представляли себе специалисты. Для человечества это большая удача: кристаллы Вильчека могут быть использованы в практических целях, к примеру для создания сверхточных атомных часов, гироскопов нового поколения и других устройств.
Кристаллы времени проявляют весьма странную активность под воздействием электромагнитных волн. В таком кристалле все молекулы вращаются в определенном направлении, и с каждым новым ЭМ-импульсом оно изменяется. Но даже в том случае, если импульсы носят бессистемный характер, направление вращения все равно изменяется с регулярными интервалами, благодаря чему кристаллы времени могут использоваться как мера отсчета временных интервалов, то есть как универсальные часы.
В прошлом году исследователи выяснили , как создать эти кристаллы в лаборатории с помощью довольно сложной методики, включающей в себя точечное воздействие лазеров на набор атомов иттербия. Однако новая работа физиков из Йельского университета доказала, что синтезировать кристаллы времени так просто, что этим буквально может заниматься ребенок. Они обнаружили, что временные кристаллы образуются внутри обычных кристаллов моноаммонийфосфата, который часто используется в наборах «юного химика» и прочих познавательных игрушках, благодаря которым можно вырастить красивый кристалл в домашних условиях. Теоретически, в каждой такой структуре могут скрываться кристаллы Вильчека. Шон Баррет, автор исследования, отмечает, что физикам это только на руку, поскольку чем дешевле и проще процесс — тем легче его изучать. Теперь им предстоит во всех деталях разобраться в механизме синтеза кристаллов времени и определить, как именно их можно использовать на благо технологического прогресса.
Недавно группа американских физиков смогла сконструировать так называемый "кристалл времени" — структуру, возможность существования которой была предсказана уже давно.
Особенностью кристалла является способность периодически становиться асимметричным не только в пространстве, но и во времени. Поэтому из него можно сделать сверхточный хронометр.
Кристаллы - вообще весьма парадоксальные образования. Взять хотя бы их отношения с симметрией: как мы знаем, сам по себе кристалл, если судить по его внешнему виду, можно считать просто образцом пространственной симметрии. Однако процесс кристаллизации есть не что иное, как ее злостное нарушение.
Это очень хорошо иллюстрирует пример образования кристаллов в растворе, например, каких-нибудь солей. Если проанализировать данный процесс с самого начала, то будет видно, что в самом растворе частицы расположены хаотично, и вся система находится на минимальном энергетическом уровне. Однако взаимодействия между частицами симметричны относительно поворотов и сдвигов. Однако после того, как жидкость кристаллизовалась, возникает состояние, в котором обе эти симметрии оказываются нарушенными.
аким образом, можно сделать вывод о том, что взаимодействие между частицами в получившемся кристалле совсем не симметрично. Из этого вытекает ряд важнейших свойств кристаллов - например, эти структуры, в отличие от жидкости или газа, по-разному проводят электрический ток или тепло в различных направлениях (могут проводить на север, а на юг - нет). В физике данное свойство называется анизотропией. Эта кристаллическая анизотропия уже давно используется человеком в различных отраслях, например, в электронике.
Еще одним интересным свойством кристаллов является то, что он, как система, всегда находится на минимальном энергетическом уровне. Что самое любопытное, он намного ниже, чем, например, в растворе, который "породил" кристалл. Можно сказать, что для того, чтобы получить данные структуры, нужно "отнимать" энергию у исходного субстрата.
Итак, при образовании кристалла происходит понижение энергетического уровня системы и нарушение исходной пространственной симметрии. А не так давно два физика из США, Ал Шэпир и Фрэнк Вильчек (кстати, нобелевский лауреат), задумались, возможно ли существование так называемого "четырехмерного" кристалла, где нарушение симметрии происходило бы не только в пространстве , но и во времени.
С помощью сложных математических выкладок ученые смогли доказать, что это вполне возможно. В итоге получилась система, существующая, как и реальный кристалл, на минимальном энергетическом уровне. Но самое интересное заключается в том, что она за счет образования определенных периодических структур не в пространстве, а во времени приходила бы к несимметричному конечному состоянию. Авторы работы назвали такую систему очень торжественно - "кристаллом времени".
Через некоторое время группа физиков-экспериментаторов во главе с профессором Чжан Сяном из Университета Калифорнии (США) решила создать такую систему уже не на бумаге, а в реальности. Ученые создали облако ионов бериллия, после чего "заперли" его в круговом электромагнитном поле. Поскольку электростатическое отталкивание одинаково заряженных ионов друг от друга заставляет их распределяться по кругу равномерно, исследователи, по сути дела, получили газообразный кристалл. И пока характеристики поля были неизменными, то состояние системы, по идее, тоже не должно было меняться.
В то же время расчеты, а затем и наблюдения показали, что это самое ионное кольцо не будет неподвижным. Газообразный кристалл постоянно вращался, и взаимодействия ионов при этом были то симметричными, то нет. Все это наблюдалось даже тогда, когда кристалл охладили практически до абсолютного нуля. Таким образом, эта структура действительно является "кристаллом времени": она проявляет свойства периодичности и асимметрии как в пространстве, так и во времени.
Любопытно, что неспешно вращающееся кольцо ионов, сконструированное группой профессора Чжана, вызвало у многих неспециалистов ассоциацию с вечным двигателем. Конечно, газовый кристалл внешне похож на perpetum mobile, однако на самом деле таковым не является. Ведь эта система не может совершить никакой работы, так как все ее составляющие находятся на одном энергетическом уровне (к тому же, минимальном). А согласно второму закону термодинамики, работа возможна лишь в той системе, составляющие которой находятся минимум на двух энергетических уровнях.
В то же время это вовсе не значит, что "кристалл времени" никак нельзя использовать для практических нужд. Профессор Чжан убежден, что на его основе можно сконструировать, например, сверхточный хронометр. Ведь переход от симметрии к асимметрии имеет ярко выраженную периодичность. Пока же профессор и его коллеги хотят заняться более детальным изучением свойств созданной ими замечательной структуры…
«Кристалл во времени» - это необычная физическая концепция, теоретически предложенная несколько лет назад как иллюстрация спонтанного нарушения инвариантности законов физики от времени. Говоря привычными словами, это такая система, в которой в состоянии с наименьшей энергией и без какого-либо внешнего воздействия спонтанно возникало бы внутреннее движение. Быстро выяснилось, впрочем, что такая система невозможна - по крайней мере, в своей исходной формулировке. Однако совсем недавно физики предсказали, что, если вместо непрерывного течения времени взять его дискретный аналог, такая «кристаллизация» уже не будет ничему противоречить. На днях в журнале Nature были опубликованы две статьи разных коллективов экспериментаторов, сообщающие об успешной реализации таких «кристаллов в дискретном времени».
Кажется необходимым начать этот рассказ с терминологического пояснения. Эта тема уже прошла недавно по лентам новостей, когда описываемые здесь статьи только появились в архиве электронных препринтов. В них рассказывалось про систему, названную авторами discrete time crystal . Все заметки переводили термин time crystal как «временной кристалл» или, еще загадочнее, «кристалл времени». Слово discrete почти везде опускалось, и если оно и фигурировало, то в комбинации «дискретный временной кристалл», что тоже не слишком проясняло ситуацию - кристалл ведь и так дискретный! Наконец, когда экспериментальные статьи были опубликованы в журнале Nature , на его обложке красовалась не менее загадочная художественная иллюстрация (рис. 1). Это всё навевало красивые и таинственные образы, которые, к сожалению, были далеки от того, что реально вкладывалось авторами в название.
В этой заметке мы попытались подобрать перевод, более близкий к исходному смыслу. Кристаллизуется, конечно, не время, а некоторая система частиц, и заметить эту кристаллизацию можно, изучив движение системы во времени. Отсюда термин «кристалл во времени», в противопоставление обычному «кристаллу в пространстве». А вот слово discrete следует относить ко времени , а не к кристаллу. Такую «кристаллизацию» можно заметить по периодическому движению не в настоящем времени, а в дискретном его аналоге, в «отсчетах» внешнего периодического воздействия. Поэтому такую систему мы называем «кристаллом в дискретном времени».
Впрочем, мы понимаем, что пока это всё кажется совершенно непонятным, - и поэтому давайте перейдем к сути.
Физик-теоретик, Нобелевский лауреат Фрэнк Вильчек знаменит своими вкладами и нестандартными идеями в самых разных разделах теоретический физики. Поэтому когда в 2012 году он в паре коротких статей (первая , вторая) предложил спорную, но очень любопытную идею «кристаллов во времени», научное сообщество обратило на нее пристальное внимание.
Отправная точка этого предложения - это явление спонтанного нарушения симметрии, которое встречается в самых разных областях физики, начиная от обычной термодинамики и заканчивая миром элементарных частиц. Слово «спонтанное» означает, что, хотя сами физические законы обладают определенной симметрией, вещество, которое им подчиняется, всё же предпочитает собираться в такую конфигурацию, которая эту симметрию нарушает. Никто не «заставляет» систему нарушать симметрию, она это делает сама, спонтанно.
Пожалуй, самый яркий пример этого эффекта - это само существование кристаллических тел. Если на секунду представить себе гипотетическую ситуацию, когда атомы вообще никак не взаимодействуют друг с другом, то любое вещество было бы идеальным газом, совершенно однородным в пространстве. Эта пространственная однородность - проявление того, что законы, управляющие движением атомов, обладают симметрией: они не меняются при произвольном смещении в пространстве в любом направлении. Однако взаимодействие между атомами существует, и, если оно достаточно сильное, оно заставляет материю организоваться в периодическую пространственную структуру - кристалл. Кристалл симметричен относительно сдвигов не на любые расстояния, а только на вполне определенные шаги в конкретных направлениях. Можно сказать, что исходная сдвиговая симметрия спонтанно нарушилась, и ответственным за это нарушение является взаимодействие между атомами.
Вильчек задался вопросом: а нельзя ли найти такую систему, которая бы демонстрировала спонтанное нарушение симметрии относительно сдвигов по времени , а не в пространстве? Такая система вела бы себя крайне необычно. Если речь идет, например, о многочастичной системе, настоящем куске материи, то в состоянии теплового равновесия, без каких-либо внешних воздействий, в ней спонтанно возникало бы периодическое движение . Это были бы этакие «спонтанно тикающие часы», ход которых не задается никаким внешним метрономом. Визуальная схожесть с пространственной периодичностью в обычном кристалле, самопроизвольная периодичность, этакая «кристаллизация» во времени и дала идее такое броское название.
Подчеркнем сразу же два важнейших момента. Это должно быть движение в состоянии термодинамического равновесия, а не в возмущенном состоянии, и поэтому извлечь из него энергию, остановив движение, уже нельзя. Кроме того, движение должно быть детектируемым. Скажем, многоэлектронный атом тут не подходит: хотя электроны в основном состоянии атома могут вращаться вокруг ядра, это не приводит ни к какому наблюдаемому перетеканию электронной плотности.
Сам Вильчек признавал, что такая гипотетическая система выглядит противоестественной, но надеялся, что, специальным образом подобрав закон взаимодействия, можно ее создать. Однако быстро выяснилось, что это радикальное предложение все же неосуществимо. Возражения стали появляться сразу же, и в 2015 годы было окончательно доказано , что никакого спонтанного периодического движения в состоянии термодинамического равновесия возникнуть не может.
Казалось бы, на этом можно было поставить точку. Но тут проявилась пытливость ума теоретиков: идея спонтанного нарушения инвариантности во времени была настолько привлекательной, что теоретики стали пытаться найти хоть нечто, похожее на нее, слегка ослабив исходные требования.
Один такой вариант, предложенный в прошлом году, получил название discrete time crystal , «кристалл в дискретном времени» (см. статью N. Y. Yao et al., 2017. Discrete Time Crystals: Rigidity, Criticality, and Realizations и более раннюю статью D. V. Else et al., 2016. Floquet Time Crystals). Он относится к ситуации, когда система из многих взаимодействующих частиц находится не в полной изоляции, а испытывает строго периодические толчки , внешнее воздействие с периодом t . Если в системе есть источник беспорядка, то внешние толчки не будут бесконечно раскачивать колебание или нагревать систему, а просто переведут ее в новое, особенное состояние - оно как бы равновесное, но только в условиях периодического внешнего воздействия. (Это утверждение само по себе - тоже совсем недавний результат , который и положил начало «кристаллам в дискретном времени».)
В таком новом равновесном состоянии, конечно, уже может существовать какое-то движение с периодом t - ведь систему-то периодически толкают! Исходная симметрия относительно произвольных сдвигов по времени уже отсутствует, зато остается неизменность законов движения относительно «дискретного времени», то есть сдвигов по времени на период t . И теперь вместо плавной эволюции системы с настоящим временем можно изучать то, как она ведет себя в дискретном времени, через несколько «прыжков» по времени на величину t .
Можно ли кристаллизацию по времени организовать вот в таком «дискретном времени»? Это означало бы, что в системе самопроизвольно запускается долгопериодическое движение с периодом T , который не равен, а в несколько раз превышает t . Поскольку тут уже нет строго равновесной ситуации, запрет, обнаруженный для настоящих кристаллов во времени, здесь уже не действует. Авторы прошлогодней теоретической статьи пришли к выводу, что такие «кристаллы в дискретном времени» действительно не противоречат законам физики, и даже предложили и численно проанализировали конкретный подход к их реализации.
Сделаем тут небольшое отступление и разберемся, что в этой идее важно, а что нет. Вообще-то хорошо известны примеры, когда в ответ на периодическое воздействие система двигается не строго с таким же, а с кратным периодом. Вспомните, например, как вы стоя раскачиваетесь на качелях: вы приседаете и встаете с частотой вдвое большей частоты качелей. Или другими словами, вы воздействуете на качели, периодически меняя момент инерции (и создаете тем самым параметрический резонанс), и в системе усиливается колебание со вдвое большим периодом.
Особенность этого и других подобных примеров - это отсутствие «жесткости» результата. Да, возникает отклик с периодом T > t , но отношение T/t - не зафиксировано, оно податливо. Мы можем изменить периодичность воздействия и увидим, что T/t изменится. Например, на тех же качелях чуть-чуть изменить темп приседания относительно идеального значения, то вместо раскачки колебаний будут наблюдаться биения - амплитуда колебаний то плавно возрастает, то плавно уменьшается, - а это признак наложения двух колебаний с близкими, но разными частотами.
В настоящем кристалле в дискретном времени никаких биений быть не должно. Отношение T/t обязано оставаться неизменным даже при небольших искажениях системы, при сознательном смещении частоты воздействующей силы относительно идеального значения. Образно говоря, кристалл во времени должен обладать своеобразной «жесткостью» - но только это не пространственная жесткость, а временная.
Кроме того, эта жесткость должна обеспечиваться взаимодействием отдельных частиц. Она должна проступать, когда взаимодействие становится сильнее некоторого порога, и исчезать, когда беспорядочный шум пересиливает его упорядочивающую тенденцию. Иными словами, система должна демонстрировать фазовые переходы: «затвердевать в дискретном времени» при усилении взаимодействия и «плавиться» при усилении шумов.
Две экспериментальные работы, опубликованные в свежем выпуске Nature , предлагают две разных реализации «кристалла в дискретном времени» (рис. 2). Они отличаются исходным материальным носителем и тонкостями эксперимента, но по своей сути очень похожи. В одном случае это были 10 отдельных ионов иттербия, пойманных в ловушку и висящие в пространстве на расстоянии три микрона друг от друга. Поскольку ионы отделены друг от друга, физики могли воздействовать лазерными импульсами либо сразу на всех них, либо на каждый ион независимо. Во второй статье это были атомы азота, внедренные в виде примеси в кристаллик алмаза. Там на кристаллик микронных размеров приходилось около миллиона таких примесных атомов, и на всех них синхронно воздействовали импульсами микроволнового излучения.
Обратите внимание на важный момент. В обоих случаях «кристаллизация» относится не к материальному перемещению самих атомов, а к ориентации их спинов . Атомы никуда не двигались: они либо удерживались в ловушках, либо намертво засели внутри кристалла. А вот их спины были вполне подвижные; именно на них воздействовали физики и именно они образовывали кристаллическую упорядоченность во времени. Поэтому не следует визуализировать эти достижения как какую-то новую субстанцию, которая периодически превращается в физически осязаемый кристалл, как на рис. 1; всё здесь было намного более прозаично.
Управление спинами осуществлялось с помощью циклических воздействий короткими импульсами лазерного света или микроволнового излучения. В каждом цикле был импульс воздействия, синхронно поворачивающий все спины на строго определенный угол. Это тот самый четко отмеренный удар по системе. Затем следовал специальный импульс, «включающий» на время попарное взаимодействие атомов, которое зависело от взаимной ориентации спинов и их удаленности друг от друга. Интенсивностью этого взаимодействия можно было управлять в широких границах. Наконец, в случае с цепочкой ионов использовался и третий импульс, для насильного создания беспорядка, - и здесь как раз сильно помогло то, что на каждый ион можно было воздействовать независимо. В случае примесей в кристаллике этого не требовалось, там беспорядок и так присутствует в виде хаотичного размещения в кристалле. Эта комбинация импульсов - удар, взаимодействие, беспорядок - это и есть один цикл длительностью t . Вся процедура повторяется снова и снова вплоть до сотни раз. По окончании воздействий физики измеряют результирующее состояние спинов - либо поштучно, как в случае с цепочкой ионов, либо целиком во всем кристаллике.
Явление, которое происходит в таких условиях, схематично показано на рис. 3. Первый цикл воздействия почти точно переворачивает спины из положения вверх в положение вниз, а второй цикл воздействия возвращает спины практически в исходное состояние. Вместе получается периодическое движение с удвоенным периодом. Хаотичное воздействие стремится разбить этот порядок, но за счет взаимодействия спины цепляются друг за друга и пытаются удержаться сонаправленными. И самый важный момент: даже если импульс воздействия оказался недостаточно выверенным, например, он не до конца повернул спины, то атомы своими коллективным усилием компенсируют эту неточность и все равно держат строгий двухпериодический цикл. Период отклика жестко стоит на отметке 2t , даже если импульс воздействия пытается «навязать» атомам другой период. Это и есть пресловутая жесткость кристалла, способность сопротивляться отклонению в сторону.
Франк Вилчек.
В июне группа физиков под руководством Сян Чжана, наноинженера из Беркли, и Тонгчанга Ли, физика из группы Чжана, предложили создать кристаллы времени в форме постоянно вращающихся колец заряженных атомов или ионов. (Ли сообщил, что он думал об этом еще до того, как прочитал документацию Вилчека). Статья была опубликована вместе с вилчековской в том же журнале.
С тех пор только один критик - Патрик Бруно, физик-теоретик из Европейского фонда синхротронного излучения во Франции - выразил несогласие в научном виде. Бруно считает, что Вилчек и его коллеги ошибочно отождествляют времязависимое поведение объектов с возбужденным энергетическим состоянием, а не основным. Нет ничего удивительного в объектах с избыточным энергетическим движением в цикле с замедлением движения по мере рассеяния энергии. Чтобы стать кристаллом времени, объект должен обладать вечным движением в основном состоянии.
Комментарий Бруно и ответ Вилчека появился в журнале PRL в марте 2013 года. Бруно продемонстрировал, что низкое энергетическое состояние возможно в системе, предложенной Вилчеком, как гипотетический пример квантового кристалла времени. Вилчек ответил, что хотя приведенный пример не является кристаллом времени, он не думает, что эта ошибка «ставит под вопрос основные понятия».
«Я доказал, что пример некорректен. Но у меня до сих пор нет общего доказательства. Пока».
Споры едва ли закончатся теоретическими основаниями. Козырь находится в руках у экспериментаторов.
Международная группа ученых во главе с учеными Беркли готовит сложный в лаборатории, однако он может быть проведен в период «от трех лет до бесконечности», прежде чем придет к логичному завершению. Все зависит от непредвиденных технических трудностей или финансирования. Есть надежда, что кристаллы времени выведут физику за пределы точной, но квантовой механики, и проложат путь к более великой теории.
«Я очень заинтересован в том, могу ли я сделать вклад, следуя постулатам Эйнштейна», - говорит Ли. - «Он говорил, что квантовая механики является неполной».
Иллюстрация эксперимента с кольцом ионов в магнитной ловушке.
В теории общей относительности Эйнштейна измерения пространства и времени сплетаются воедино - пространство-время. Но в квантовой механике, которая отвечает за взаимодействие веществ на субатомном уровне, время представлено иначе - «тревожной, эстетически неприятной», по словам Закржевского.
Различные понятия о времени могут быть одной из причин несовместимости общей теории относительности и квантовой механики. По крайней мере один из этих двух элементов должен быть изменен, чтобы стало возможным создание всеобъемлющей теории квантовой гравитации. Это одна из основных целей теоретической физики. Какое из пониманий времени будет верным?
Если кристаллы времени могут нарушать симметрию времени таким же образом, как обычные кристаллы разрывают пространственную симметрию, «это будет говорить о том, что в природе эти две величины, похоже, обладают симметричными свойствами, а значит должны однозначно отражаться в теории. Значит, квантовая механика является несовершенной, и квантовым физикам придется рассматривать время и пространство как две нити одной ткани.
Команда Беркли будет пытаться построить кристаллы времени путем введения сотни ионов кальция в небольшую камеру, окруженную электродами. Электрическое поле загонит ионы в ловушку толщиной 100 микронов, примерно с человеческий волос. После ученым придется откалибровать электроды, чтобы выровнять поле. Поскольку заряды отталкиваются, ионы распределятся равномерно по внешнему краю ловушки, образовав кристаллическое кольцо.
Сначала ионы будут вибрировать в возбужденном состоянии, но диодные лазеры, вроде тех, что используются в DVD-проигрывателях, будут урезать их кинетическую энергию. По расчетам группы, ионное кольцо достигнет основного состояния, когда лазеры охладят ионы до одной миллиардной градуса выше абсолютного нуля. Такая температура долгое время была недостижима из-за нагревания электродов в ловушке, но в сентябре появилась революционная технология, которая в сто крат снизит тепловой фон ловушки. Это именно тот фактор, который нужен исследователям.
Затем исследователи включат статическое магнитное поле в ловушке, которое, если верить теории, заставит ионы вращаться (причем до бесконечности). Если все пойдет по плану, ионы вернутся к исходной точке спустя определенный интервал времени, образовав регулярно повторяющуюся во времени решетку и нарушив временную симметрию.
Чтобы увидеть вращение кольца, ученые тронут один из ионов с помощью лазера, эффективно поставив его в другое электронное состояние, отличное от других 99 ионов. Избранный ион будет оставаться ярким и показывать свое новое местоположение, в то время как другие будут затемняться вторым лазером.
Если яркий ион будет обращаться с постоянной скоростью, ученые впервые продемонстрируют, что трансляционная симметрия времени может быть нарушена.
«Это на самом деле перевернет наше понимание», - говорит Ли. Но прежде мы должны доказать, что это работает».
Пока эксперимент не закончится успехом, многие физики будут настроены скептически.
«Лично я думаю, что невозможно обнаружить движение в основном состоянии», - говорит Бруно. - «Они могут загнать кольцо ионов в тороидальную ловушку и поиграться с интересной физикой, но они не увидят, что их часики тикают постоянно, как они заявляют».
Хотя, кто знает, возможно квантовая механика .
Статьи по теме: | |
Отделы водорослей К какому царству относятся сине зеленые водоросли
Среди существующих ныне организмов встречаются такие, о принадлежности... Что такое система вообще
В силу того, что системный анализ направлен на решение любых проблем... Курс выживания в дикой природе Подмосковья: как это было
В мае 2012 года в средствах массовой информации появилась информация о... |