Круг как геометрическая фигура. Смотреть что такое "Круг" в других словарях. Какими величинами характеризуется окружность

Круг как геометрическая фигура. Смотреть что такое "Круг" в других словарях. Какими величинами характеризуется окружность

И круг - геометрические фигуры, взаимосвязанные между собой. есть граничная ломаная линия (кривая) круга ,

Определение. Окружность - замкнутая кривая, каждая точка которой равноудалена от точки, называемой центром окружности.

Для построения окружности выбирается произвольная точка О, принятая за центр окружности, и с помощью циркуля проводится замкнутая линия.

Если точку О центра окружности соединить с произвольными точками на окружности, то все полученные отрезки будут между собой равны, и называются такие отрезки радиусами, сокращенно обозначаются латинской маленькой или большой буквой «эр» (r или R ). Радиусов в окружности можно провести столько же, сколько точек имеет длина окружности.

Отрезок, соединяющий две точки окружности и проходящий через ее центр, называется диаметром. Диаметр состоит из двух радиусов , лежащих на одной прямой. Диаметр обозначается латинской маленькой или большой буквой «дэ» (d или D ).

Правило. Диаметр окружности равен двум ее радиусам .

d = 2r
D = 2R

Длина окружности вычисляется по формуле и зависит от радиуса (диаметра) окружности. В формуле присутствует число ¶, которое показывает во сколько раз длина окружности больше, чем ее диаметр. Число ¶ имеет бесконечное число знаков после запятой. Для вычислений принято ¶ = 3,14.

Длина окружности обозначается латинской большой буквой «цэ» (C ). Длина окружности пропорциональна ее диаметру. Формулы для расчета длины окружности по ее радиусу и диаметру:

C = ¶d
C = 2¶r

  • Примеры
  • Дано: d = 100 см.
  • Длина окружности: C = 3,14 * 100 см = 314 см
  • Дано: d = 25 мм.
  • Длина окружности: С = 2 * 3,14 * 25 = 157 мм

Секущая окружности и дуга окружности

Всякая секущая (прямая линия) пересекает окружность в двух точках и делит ее на две дуги. Величина дуги окружности зависит от расстояния между центром и секущей и измеряется по замкнутой кривой от первой точки пересечения секущей с окружностью до второй.

Дуги окружности делятся секущей на большую и малую, если секущая не совпадает с диаметром, и на две равные дуги, если секущая проходит по диаметру окружности.

Если секущая проходит через центр окружности, то ее отрезок, расположенный между точками пересечения с окружностью, есть диаметр окружности, или самая большая хорда окружности.

Чем дальше секущая расположена от центра окружности, тем меньше градусная мера меньшей дуги окружности и больше - большей дуги окружности, а отрезок секущей, называемый хордой , уменьшается по мере удаления секущей от центра окружности.

Определение. Кругом называется часть плоскости, лежащая внутри окружности.

Центр, радиус, диаметр окружности являются одновременно центром, радиусом и диаметром соответствующего круга.

Так как круг - это часть плоскости, то одним из его параметров является площадь.

Правило. Площадь круга (S ) равна произведению квадрата радиуса (r 2 ) на число ¶.

  • Примеры
  • Дано: r = 100 см
  • Площадь круга:
  • S = 3,14 * 100 см * 100 см = 31 400 см 2 ≈ 3м 2
  • Дано: d = 50 мм
  • Площадь круга:
  • S = ¼ * 3,14 * 50 мм * 50 мм = 1 963 мм 2 ≈ 20 см 2

Если в круге провести два радиуса к разным точкам окружности, то образуется две части круга, которые называется секторами . Если в круге провести хорду, то часть плоскости между дугой и хордой называется сегментом окружности .

Тема урока

Геометрические фигуры

Что такое геометрическая фигура

Геометрические фигуры – это совокупность множества точек, линий, поверхностей или тел, которые расположены на поверхности, плоскости или пространстве и формирует конечное количество линий.

Термин «фигура» в какой-то степени формально применяется к множеству точек, но как правило фигурой принято называть такие множества, которые расположенные на плоскости и ограничиваются конечным числом линий.

Точка и прямая - это основные геометрические фигуры, расположенные на плоскости.

К самым простым геометрическим фигурам на плоскости принадлежат - отрезок, луч и ломаная линия.

Что такое геометрия

Геометрия – это такая математическая наука, которая занимается изучением свойств геометрических фигур. Если дословно перевести на русский язык термин «геометрия», то он обозначает «землемерие», так как в стародавние времена основной задачей геометрии, как науки, стало измерение расстояний и площадей на поверхности земли.

Практическое применение геометрии бесценно во все времена и независимо от профессии. Без знаний геометрии не может обойтись ни рабочий, ни инженер, ни архитектор и даже художник.

В геометрии есть такой раздел, который занимается изучением различных фигур на плоскости и называется планиметрия.

Вам уже известно, что фигурой называют произвольное множество точек, находящиеся на плоскости.

К геометрическим фигурам принадлежат: точка, прямая, отрезок, луч, треугольник, квадрат, круг и другие фигуры, которые изучает планиметрия.

Точка

Из выше изученного материала вам уже известно, что точка относится к главным геометрическим фигурам. И хотя это самая малая геометрическая фигура, но она необходима для построения других фигур на плоскости, чертеже или изображении и является основой для всех остальных построений. Ведь построение более сложноватых геометрических фигур складывается из множества точек, характерных для данной фигуры.

В геометрии точки обозначают прописными буквами латинского алфавита, например, такими, как: А, В, С, D ….


А теперь подведем итог, и так, с математической точки зрения, точка является таким абстрактным объектом в пространстве, который не имеет объема, площади, длины и других характеристик, но остается одним из фундаментальных понятий в математике. Точка – это такой нульмерный объект, которые не имеет определения. По определению Евклида, точкой называют то, что невозможно определить.

Прямая

Как и точка, прямая относится к фигурам на плоскости, которая не имеет определения, так как состоит из бесконечного множества точек, находящихся на одной линии, которая не имеет ни начала ни конца. Можно утверждать, что прямая линия бесконечна и не имеет предела.


Если же прямая начинается и заканчивается точкой, то она уже не является прямой и называется отрезком.

Но иногда прямая, с одной стороны имеет точку, а с другой нет. В таком случае прямая превращается в луч.

Если же взять прямую и на ее средине поставить точку, то она разобьет прямую на два противоположно направленных луча. Данные лучи являются дополнительными.

Если же перед вами несколько отрезков, соединенных между собой так, что конец первого отрезка становиться началом второго, а конец второго отрезка - началом третьего и т. д., и эти отрезки находятся не на одной прямой и при соединении имеют общую точку, то такая цепочка является ломаной линией.

Задание

Какая ломаная линия называется незамкнутой?
Как обозначается прямая?
Как называется ломаная линия, у которой четыре замкнутых звена?
Какое название имеет ломаная линия с тремя замкнутыми звеньями?

Когда конец последнего отрезка ломаной совпадает с началом 1-го отрезка, то такую ломаную линию называют замкнутой. Примером замкнутой ломаной является любой многоугольник.

Плоскость

Как точка и прямая, так и плоскость является первичным понятием, не имеет определения и у нее нельзя увидеть ни начала, ни конца. Поэтому, при рассмотрении плоскости, мы рассматриваем только ту ее часть, которая ограничивается замкнутой ломаной линией. Таким образом, плоскостью можно считать любую гладкую поверхность. Этой поверхностью может быть лист бумаги или стола.

Угол

Фигура, которая имеет два луча и вершину, называется углом. Место соединения лучей, является вершиной этого угла, а его сторонами считаются лучи, которые этот угол образуют.



Задание:

1. Как в тексте обозначают угол?
2. Какими единицами можно измерить угол?
3. Какие бывают углы?

Параллелограмм

Параллелограмм - это четырехугольник, противолежащие стороны которого попарно параллельны.

Прямоугольник, квадрат и ромб являются частными случаями параллелограмма.

Параллелограмм, имеющий прямые углы равные 90 градусам, является прямоугольником.

Квадрат - это тот же параллелограмм, у него и углы и стороны равны.

Что до определения ромба, то это такая геометрическая фигура, все стороны которого равны.

Кроме того, следует знать, что любой квадрат является ромбом, но не каждый ромб может быть квадратом.

Трапеция

При рассмотрении такой геометрической фигуры, как трапеция, можно сказать, что в частности она, как и четырехугольник имеет одну пару параллельных противолежащих сторон и является криволинейной.

Окружность и круг

Окружность - геометрическое место точек плоскости, равноудалённых от заданной точки, называемой центром, на заданное ненулевое расстояние, называемое её радиусом.


Треугольник

Также к простым геометрическим фигурам принадлежит и уже изучаемый вами треугольник. Это один из видов многоугольников, у которого часть плоскости ограничена тремя точками и тремя отрезками, которые соединяют эти точки попарно. Любой треугольник имеет три вершины и три стороны.

Задание: Какой треугольник называют вырожденным?



Многоугольник

К многоугольникам относятся геометрические фигуры разных форм, у которых замкнутая ломаная линия.


В многоугольнике все точки, которые соединяют отрезки, являются его вершинами. А отрезки, из которых состоит многоугольник, являются его сторонами.

А известно ли вам, что возникновение геометрии уходит в глубину веков и связано с развитием различных ремесел, культуры, искусства и наблюдением за окружающим миром. Да и название геометрических фигур является тому подтверждением, так как их термины, возникли не просто так, а благодаря своей схожести и подобию.

Ведь термин «трапеция» в переводе с древнегреческого языка от слова «трапезион» обозначает столик, трапеза и другие производные слова.

«Конус» произошел от греческого слова «конос», что в переводе звучит, как сосновая шишка.

«Линия» имеет латинские корни и происходит от слова «линум», в переводе это звучит, как льняная нить.

А знаете ли вы, что если взять геометрические фигуры с одинаковым периметром, то среди них обладателем самой большой площади оказался круг.

Окружность – это плоская замкнутая линия, все точки которой находятся на одинаковом расстоянии от некоторой точки (точки О), которая называется центром окружности.
(Окружность - геометрическая фигура, состоящая из всех точек, расположенных на заданном расстоянии от данной точки. )

Круг – это часть плоскости, ограниченная окружностью.Точка О также называется центром круга.

Расстояние от точки окружности до её центра, а также отрезок, соединяющий центр окружности с её точкой, называется радиусом окружности/круга.
Посмотрите, как используется круг и окружность в нашей жизни, искусстве, дизайне.

Хорда - греческое - струна, стягивающая что-то
Диаметр - "измерение через"

КРУГЛАЯ ФОРМА

Углы могут встречаться во все более возрастающем количестве, приобретать, соответственно, все больший разворот – пока не исчезнут окончательно и плоскость не станет кругом.
Это очень простой и одновременно очень сложный случай, о котором мне хотелось бы поговорить подробно. Здесь необходимо отметить, что как простота, так и сложность обусловлены отсутствием углов. Круг прост, поскольку давление его границ, в сравнении с прямоугольными формами, нивелировано – различия здесь не так велики. Он сложен, поскольку верх неощутимо перетекает в левое и правое, а левое и правое – в низ.

В. Кандинский

В Древней Греции круг и окружность считались венцом совершенства. Действительно, в каждой своей точке окружность устроена одинаковым образом, что позволяет ей двигаться самой по себе. Это свойство окружности сделало возможным возникновение колеса, поскольку ось и втулка колеса должны все время быть в соприкосновении.

В школе изучается много полезных свойств окружности. Одной из самых красивых теорем является следующая: проведем через заданную точку прямую, пересекающую заданную окружность, тогда произведение расстояний от этой точки до точек пересечения окружности с прямой не зависит от того, как именно была проведена прямая. Этой теореме около двух тысяч лет.


На рис. 2 изображены две окружности и цепочка окружностей, каждая из которых касается этих двух окружностей и двух соседей по цепочке. Швейцарский геометр Якоб Штейнер около 150 лет назад доказал следующее утверждение: если при некотором выборе третьей окружности цепочка замкнется, то она замкнется и при любом другом выборе третьей окружности. Отсюда следует, что если однажды цепочка не замкнулась, то она не замкнется при любом выборе третьей окружности. Художнику, рисовавшему изображенную цепочку, пришлось бы немало потрудиться, чтобы она получилась, или обратиться к математику для расчета расположения двух первых окружностей, при котором цепочка замыкается.

Вначале мы упомянули о колесе, но еще до колеса люди использовали круглые бревна
- катки для перевозки тяжестей.

А можно ли использовать катки не круглой, а какой-нибудь другой формы? Немецкий инженер Франц Рело обнаружил, что таким же свойством обладают катки, форма которых изображена на рис. 3. Эта фигура получается, если провести дуги окружностей с центрами в вершинах равностороннего треугольника, соединяющие две другие вершины. Если провести к этой фигуре две параллельные касательные, то расстояние между ними будет равно длине стороны исходного равностороннего треугольника, так что такие катки ничем не хуже круглых. В дальнейшем были придуманы и другие фигуры, способные выполнять роль катков.

Энц. "Я познаю мир. Математика", 2006

У каждого треугольника имеется, и притом единственная, окружность девяти точек . Это окружность, проходящая через следующие три тройки точек, положение которых определено для треугольника: основания его высот D1 D2 и D3, основания его медиан D4, D5 и D6 середины D7, D8 и D9 отрезков прямых от точки пересечения его высот Н до его вершин.

Эта окружность, найденная в XVIII в. великим ученым Л. Эйлером (поэтому ее часто также называют окружностью Эйлера), была заново открыта в следующем столетии учителем провинциальной гимназии в Германии. Звали этого учителя Карл Фейербах (он был родным братом известного философа Людвига Фейербаха).
Дополнительно К. Фейербах выяснил, что окружность девяти точек имеет еще четыре точки, тесно связанные с геометрией любого данного треугольника. Это -точки ее касания с четырьмя окружностями специального вида. Одна из этих окружностей вписанная, остальные три - вневписанные. Они вписаны в углы треугольника и касаются внешним образом его сторон. Точки касания этих окружностей с окружностью девяти точек D10, D11, D12 и D13 называются точками Фейербаха. Таким образом, окружность девяти точек является в действительности окружностью тринадцати точек.

Окружность эту очень легко построить, если знать два ее свойства. Во-первых, центр окружности девяти точек лежит в середине отрезка, соединяющего центр описанной около треугольника окружности с точкой Н- его ортоцентром (точка пересечения его высот). Во-вторых, ее радиус для данного треугольника равен половине радиуса описанной около него окружности.


Энц. справочник юного математика, 1989

Неужели вокруг нас есть много предметов, которые похожие на геометрические фигуры? Да, это правда! В частности, много из них имеют форму круга. Например, цирковая арена, дно кастрюли, мы запросто можем вырезать его из ткани или картона.

Рассмотрим, что такое круг

Фигура, которая ограничена окружностью. Она имеет центр, поэтому все точки, которые расположены от центра до окружности, являются плоскостью круга. Радиус круга – это расстояние от его центра до окружности.

Многие не различают, что такое окружность и круг. Окружность у нас получится, если мы обведем стакан, а также мы можем выложить ее из нитки. Все точки плоскости, которые размещены на одинаковом расстоянии от данной точки, образуют фигуру, которая называется окружностью. Если соединить две точки окружности, то мы получим отрезок, который называется хордой. Если хорда будет проходить через центр окружности, то мы уже ее назовем диаметром, который равняется двум радиусам. Круг может разбиваться на сектора с помощью двух радиусов. А на сегменты круг делит хорда.

Оглянитесь! И вы увидите вокруг себя круг и окружность! Нужно только немножко фантазии.

Муж. окружность, сомкнутая кривая черта, всюду равно удаленная от средоточия; | плоскость, площадь внутри этой черты; | толща, тело, плоская вещь того же вида. мат. круг, в первом ·знач., ·т.е. один обвод его называют окружностью; во втором, ·т.е … Толковый словарь Даля

Сущ., м., употр. очень часто Морфология: (нет) чего? круга, чему? кругу, (вижу) что? круг, чем? кругом, о чём? о круге и в кругу; мн. что? круги, (нет) чего? кругов, чему? кругам, (вижу) что? круги, чем? кругами, о чём? о кругах 1. Кругом… … Толковый словарь Дмитриева

КРУГ, круга, о круге, в, на кругу и круге, мн. круги, м. 1. (в, на круге). Часть плоскости, ограниченная окружностью (мат.). Вычислить площадь круга. Квадратура круга. 2. (на кругу). Площадка, участок земли, образующий фигуру круга (разг.).… … Толковый словарь Ушакова

Кружок, общество, сфера (атмосфера), среда, стихия, комплект, контингент, мир, совокупность, состав (личный), штат, персонал, царство, ведомство, область; ряды, кадры; выбор, ассортимент, коллекция. Круг читателей. Высший круг. Литературный мир.… … Словарь синонимов

КРУГ, а (у), в кругу и в круге, на кругу и на круге, мн. и, ов, муж. 1. (в, на круге). Часть плоскости, ограниченная окружностью. 2. (в, на кругу). Круглая площадка. Молодёжь танцует на кругу. 3. (в круге, на круге, на кругу). Предмет в форме… … Толковый словарь Ожегова

Один из наиболее распространённых элементов мифопоэтической символики гетерогенного происхождения и значения, но чаще всего выражающий идею единства, бесконечности и законченности, высшего совершенства. К. как фигура, образуемая правильной кривой … Энциклопедия мифологии

А, предлож. о круге, в круге и в кругу; мн. круги; м. 1. предлож. в круге. Часть плоскости, ограниченная окружностью; сама окружность. Вычислить площадь круга. Начертить к. Очертить к. вокруг себя. Квадратура круга. Круги на воде от брошенного… … Энциклопедический словарь

- «КРУГ» артель писателей, организовавшаяся в Москве в 1922. В артели принимали участие почти исключительно попутчики (Всеволод Иванов, Л. Сейфуллина, Б. Пастернак, А. Аросев и др.) и явно буржуазные писатели (Е. Замятин, Б. Пильняк, И. Эренбург).… … Литературная энциклопедия

В центре торгового зала биржи, вокруг которого стоят участники торгов. Словарь бизнес терминов. Академик.ру. 2001 … Словарь бизнес-терминов

- (волж.) род салинга на расшивах, деревянный круг выше кресел (марса), где кончается дерево (т. е. мачта) и начинается шпиль (флагшток). Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР, 1941 … Морской словарь

Книги

  • Круг Ландау. Физика войны и мира , Круг Ландау. Данная книга - вторая в трилогии `Круг Ландау` (первая книга - `Жизнь гения` (М.: URSS, 2008)); она продолжает рассказ об академике Л. Д. Ландау (1908-1968), лауреате Нобелевской премии,…
  • Круг Михаил. Только лучшее (CD) , Круг Михаил. Сборник лучших песен Михаила Круга. Содержание: 1. Здравствуйте! 2. Здравствуй, мама! 3. Владимирский централ 4. Пусти меня, мама 5. Письмо маме 6. Мамины подружки 7. Электричка 8. Дороги 9.…
gastroguru © 2017