Выбор читателей
Популярные статьи
Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.
Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 9 класса
Образовательный комплекс 1C: "Алгебраические задачи с параметрами, 9–11 классы"
Программная среда "1С: Математический конструктор 6.0"
Проверим равенство: $\sqrt{(-x)}$=-$\sqrt{x}$.
Пусть $\sqrt{(-x)}=a$ и $\sqrt{x}=b$. Возведем оба выражения в третью степень. $–x=a^3$ и $x=b^3$. Тогда $a^3=-b^3$ или $a=-b$. В обозначениях корней получаем искомое тождество.
Давайте докажем второе свойство.
$(\sqrt{\frac{a}{b}})^3=\frac{\sqrt{a}^3}{\sqrt{b}^3}=\frac{a}{b}$.
Получили, что число $\sqrt{\frac{a}{b}}$ в кубе равно $\frac{a}{b}$ и тогда равно $\sqrt{\frac{a}{b}}$, что и требовалось доказать.
Ребята, давайте построим график нашей функции.
1) Область определения множество действительных чисел.
2) Функция нечетная, так как $\sqrt{(-x)}$=-$\sqrt{x}$. Далее рассмотрим нашу функцию при $х≥0$, после отразим график относительно начала координат.
3) Функция возрастает при $х≥0$. Для нашей функции, большему значению аргумента соответствует большее значение функции, что и означает возрастание.
4) Функция не ограничена сверху. На самом деле из сколь угодно большого числа можно вычислить корень третьей степени, и мы можем двигаться до бесконечности вверх, находя все большие значения аргумента.
5) При $х≥0$ наименьшее значение равно 0. Это свойство очевидно.
Построим график функции по точкам при х≥0.
Построим наш график функции на всей области определения. Помним, что наша функция нечетная.
Свойства функции:
1) D(y)=(-∞;+∞).
2) Нечетная функция.
3) Возрастает на (-∞;+∞).
4) Неограниченна.
5) Наименьшего и наибольшего значения нет.
7) Е(у)= (-∞;+∞).
8) Выпукла вниз на (-∞;0), выпукла вверх на (0;+∞).
2. Построить график функции. $y=\sqrt{(x-2)}-3$.
Решение. График нашей получается из графика функции $y=\sqrt{x}$, параллельным переносом на две единицы вправо и три единицы вниз.
3. Построить график функции и прочитать его.
$\begin{cases}y=\sqrt{x}, x≥-1\\y=-x-2, x≤-1 \end{cases}$.
Решение. Построим два графика функций на одной координатной плоскости с учетом наших условий. При $х≥-1$ строим график корня кубического, при $х≤-1$ график линейной функции.
1) D(y)=(-∞;+∞).
2) Функция не является ни четной, ни нечетной.
3) Убывает на (-∞;-1), возрастает на (-1;+∞).
4) Неограниченна сверху, ограничена снизу.
5) Наибольшего значения нет. Наименьшее значение равно минус один.
6) Функция непрерывна на всей числовой прямой.
7) Е(у)= (-1;+∞).
Рассмотрим функцию y=√x. График этой функции показан на рисунке ниже.
График функции y=√x
Как видите, график напоминает повернутую параболу, точнее одну из её ветвей. Мы получаем ветвь параболы x=y^2. Из рисунка видно, что график лишь один раз касается оси Оу, в точке с координатами (0;0).
Теперь стоит отметить основные свойства этой функции.
1. Область определения функции явяется луч }
Статьи по теме: | |
Отделы водорослей К какому царству относятся сине зеленые водоросли
Среди существующих ныне организмов встречаются такие, о принадлежности... Что такое система вообще
В силу того, что системный анализ направлен на решение любых проблем... Курс выживания в дикой природе Подмосковья: как это было
В мае 2012 года в средствах массовой информации появилась информация о... |