Выбор читателей
Популярные статьи
1) Природа реагирующих веществ . Большую роль играет характер химических связей и строение молекул реагентов. Реакции протекают в направлении разрушения менее прочных связей и образования веществ с более прочными связями. Так, для разрыва связей в молекулах H 2 и N 2 требуются высокие энергии; такие молекулы мало реакционноспособны. Для разрыва связей в сильнополярных молекулах (HCl , H 2 O ) требуется меньше энергии, и скорость реакции значительно выше. Реакции между ионами в растворах электролитов протекают практически мгновенно.
Фтор с водородом реагирует со взрывом при комнатной температуре, бром с водородом взаимодействует медленно и при нагревании.
Оксид кальция вступает в реакцию с водой энергично, с выделением тепла; оксид меди - не реагирует.
2) Концентрация . С увеличением концентрации (числа частиц в единице объема) чаще происходят столкновения молекул реагирующих веществ - скорость реакции возрастает.
Один из основных законов физической химии; устанавливает зависимость скорости химической реакции от концентраций реагирующих веществ и соотношение между концентрациями (или активностями) продуктов реакции и исходных веществ в состоянии химического равновесия. Норвежские учёные К. Гульдберг и П. Вааге, сформулировавшие Д. м. з. в 1864-67, назвали «действующей массой» вещества его количество в единице объёма, т. е. концентрацию, отсюда - наименование закона.
При постоянной температуре скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ, взятых в степенях, равных стехиометрическим коэффициентам в уравнении реакции.
Для мономолекулярной реакции скорость реакции определяется концентрацией молекул вещества А:
где k - коэффициент пропорциональности, который называется константой скорости реакции;[А] - молярная концентрация вещества А.
В случае бимолекулярной реакции , ее скорость определяется концентрацией молекул не только вещества А, но и вещества В:
В случае тримолекулярной реакции, скорость реакции выражается уравнением:
В общем случае, если в реакцию вступают одновременно т молекул вещества А и n молекул вещества В, т. е.
тА + пВ = С,
уравнение скорости реакции имеет вид:
Вид уравнения определяется тем, что необходимым условием элементарного акта реакции является столкновение молекул исходных веществ, т. е. их встреча в некотором малом объёме (порядка размера молекул). Вероятность найти в данный момент в данном малом объёме молекулу А пропорциональна [А], т. е., чем больше концентрация реагирующих веществ, тем больше скорость реакции в данный момент времени.
Константа скорости реакции k зависит от природы реагирующих веществ, температуры и катализатора, а в случае жидкого раствора - также и от давления; последняя зависимость существенна лишь при высоких давлениях, но не зависит от значения концентраций реагентов.
Физический смысл константы скорости заключается в том, что она равна скорости реакции при единичных концентрациях реагирующих веществ.
Для гетерогенных реакций концентрация твердой фазы в выражение скорости реакции не входит.
Пример
Запишите выражение закона действия масс для следующих реакций:
a)N 2(г) + 3 H 2(г) = 2 NH 3(г)
b) 2 C (к) + O 2(г) = 2 CO (г)
С какой скоростью протекает та или иная химическая реакция зависит от множества факторов. Что же это за факторы, и как они влияют на химическую реакцию?
Скорость химической реакции определяется изменением концентрации одного из реагирующих веществ в единицу времени при неизменном объеме системы.
Выражение для средней скорости химической реакции имеет вид:
v=c 2 -c 1 /t 2 -t 1 , где
Рис. 1. формула скорости химической реакции.
с 1 – концентрация вещества в момент времени t 1 ,
с 2 – концентрация вещества в момент времени t 2 (t 2 больше t 1)
Если концентрация относится к веществу, расходующемуся в процессе реакции, то соблюдаются следующие условия:
с 2 больше с 1 ; дельта с = с 2 -с 1 меньше 0
Если концентрация вещества относится к продукту реакции, то:
с 2 больше с 1 ; дельта с = с 2 -с 1 ,больше 0
Скорость реакции всегда положительна, поэтому в уравнении для средней скорости реакции перед дробью ставится знак минус.
Концентрацию вещества обычно выражают в моль/л, а время в секундах
По мере взаимодействия веществ концентрации непрерывно меняются, меняется и скорость химической реакции. В химической кинетике пользуются понятием истинной скорости, то есть изменением концентрации вещества за бесконечно малый промежуток времени.
Истинная скорость выражается производной концентрации данного вещества во времени
Существует несколько факторов, влияющих на скорость химических реакций. Скорость химической реакции зависит от влияния природы реагирующих веществ, от концентрации реагирующих веществ, от температуры, от присутствия катализаторов и ингибиторов, а для веществ в твердом состоянии – от поверхности реагирующих веществ и других условий:
H 2 + F 2 =2HF (взрыв)
H 2 +Cl 2 =2HCl (скорость очень мала) – хлороводород
Рис. 2. Хлороводород.
Если в реакции участвуют газы, то скорость реакции зависит от давления: при увеличении давления пропорционально увеличиваются концентрации газов.
Бывают отрицательные катализаторы, замедляющие реакцию, их называют ингибиторами.
Рис. 3. Ингибиторы определение.
Роль катализатора – снижение энергии активации. Катализ бывает гомогенный (катализатор в той же фазе, что и реагенты) и гетерогенный (катализатор в другой фазе). В живых организмах процессы катализируются ферментами – биологическими катализаторами белковой природы.
В 8 классе по химии важной темой является «Скорость химической реакции». Скорость химической реакции определяется изменением концентрации реагирующих веществ или продуктов реакции за единицу времени. Факторами, влияющими на эту скорость являются температура, давление, природа веществ, катализаторы.
Средняя оценка: 4.2 . Всего получено оценок: 97.
Изучением скорости химической реакции и условиями, влияющими на ее изменение, занимается одно из направлений физической химии - химическая кинетика. Она также рассматривает механизмы протекания этих реакций и их термодинамическую обоснованность. Эти исследования важны не только в научных целях, но и для контроля взаимодействия компонентов в реакторах при производстве всевозможных веществ.
Скоростью реакции принято называть некое изменение концентраций, вступивших в реакцию соединений (ΔС) в единицу времени (Δt). Математическая формула скорости химической реакции выглядит следующим образом:
ᴠ = ±ΔC/Δt.
Измеряют скорость реакции в моль/л∙с, если она происходит во всем объеме (то есть реакция гомогенная) и в моль/м 2 ∙с, если взаимодействие идет на поверхности, разделяющей фазы (то есть реакция гетерогенная). Знак «-» в формуле имеет отношение к изменению значений концентраций исходных реагирующих веществ, а знак «+» - к изменяющимся значениям концентраций продуктов той же самой реакции.
Взаимодействия химических веществ могут осуществляться с различной скоростью. Так, скорость нарастания сталактитов, то есть образования карбоната кальция, составляет всего 0,5 мм за 100 лет. Медленно идут некоторые биохимические реакции, например, фотосинтез и синтез белка. С довольно низкой скоростью протекает коррозия металлов.
Средней скоростью можно охарактеризовать реакции, требующие от одного до нескольких часов. Примером может послужить приготовление пищи, сопровождающееся разложением и превращением соединений, содержащихся в продуктах. Синтез отдельных полимеров требует нагревания реакционной смеси в течение определенного времени.
Примером химических реакций, скорость которых довольно высока, могут послужить реакции нейтрализации, взаимодействие гидрокарбоната натрия с раствором уксусной кислоты, сопровождающееся выделением углекислого газа. Также можно упомянуть взаимодействие нитрата бария с сульфатом натрия, при котором наблюдается выделение осадка нерастворимого сульфата бария.
Большое число реакций способно протекать молниеносно и сопровождаются взрывом. Классический пример - взаимодействие калия с водой.
Стоит отметить, что одни и те же вещества могут реагировать друг с другом с различной скоростью. Так, например, смесь газообразных кислорода и водорода может довольно длительное время не проявлять признаков взаимодействия, однако при встряхивании емкости или ударе реакция приобретает взрывной характер. Поэтому химической кинетикой и выделены определенные факторы, которые имеют способность оказывать влияние на скорость химической реакции. К ним относят:
Столь существенное отличие в скоростях химических реакций объясняется разными значениями энергии активации (Е а). Под ней понимают некое избыточное количество энергии в сравнении со средним ее значением, необходимым молекуле при столкновении, для того чтобы реакция произошла. Измеряется в кДж/моль и значения обычно бывают в границах 50-250.
Принято считать, что если Е а =150 кДж/моль для какой-либо реакции, то при н. у. она практически не протекает. Эта энергия тратится на преодоление отталкивания между молекулами веществ и на ослабление связей в исходных веществах. Иными словами, энергия активации характеризует прочность химических связей в веществах. По значению энергии активации можно предварительно оценить скорость химической реакции:
Зависимость скорости реакции от концентрации вернее всего характеризуется законом действующих масс (ЗДМ), который гласит:
Скорость химической реакции имеет прямо пропорциональную зависимость от произведения концентраций, вступивших в реакцию веществ, значения которых взяты в степенях, соответствующих им стехиометрическим коэффициентам.
Этот закон подходит для элементарных одностадийных реакций, или же какой-либо стадии взаимодействия веществ, характеризующегося сложным механизмом.
Если требуется определить скорость химической реакции, уравнение которой можно условно записать как:
αА+ bB = ϲС, то,
в соответствии с выше обозначенной формулировкой закона, скорость можно найти по уравнению:
V=k·[A] a ·[B] b , где
a и b - стехиометрические коэффициенты,
[A] и [B] - концентрации исходных соединений,
k - константа скорости рассматриваемой реакции.
Смысл коэффициента скорости химической реакции заключается в том, что ее значение будет равно скорости, если концентрации соединений будут равны единицам. Следует отметить, что для правильного расчета по этой формуле стоит учитывать агрегатное состояние реагентов. Концентрацию твердого вещества принимают равной единице и не включают в уравнение, поскольку в ходе реакции она остается постоянной. Таким образом, в расчет по ЗДМ включают концентрации только жидких и газообразных веществ. Так, для реакции получения диоксида кремния из простых веществ, описываемой уравнением
Si (тв) + Ο 2(г) = SiΟ 2(тв) ,
скорость будет определяться по формуле:
Как изменилась бы скорость химической реакции монооксида азота с кислородом, если бы концентрации исходных соединений увеличили в два раза?
Решение: Этому процессу соответствует уравнение реакции:
2ΝΟ + Ο 2 = 2ΝΟ 2 .
Запишем выражения для начальной (ᴠ 1) и конечной (ᴠ 2) скоростей реакции:
ᴠ 1 = k·[ΝΟ] 2 ·[Ο 2 ] и
ᴠ 2 = k·(2·[ΝΟ]) 2 ·2·[Ο 2 ] = k·4[ΝΟ] 2 ·2[Ο 2 ].
ᴠ 1 /ᴠ 2 = (k·4[ΝΟ] 2 ·2[Ο 2 ]) / (k·[ΝΟ] 2 ·[Ο 2 ]).
ᴠ 2 /ᴠ 1 = 4·2/1 = 8.
Ответ: увеличилась в 8 раз.
Зависимость скорости химической реакции от температуры была определена опытным путем голландским ученым Я. Х. Вант-Гоффом. Он установил, что скорость многих реакций возрастает в 2-4 раза с повышением температуры на каждые 10 градусов. Для этого правила имеется математическое выражение, которое имеет вид:
ᴠ 2 = ᴠ 1 ·γ (Τ2-Τ1)/10 , где
ᴠ 1 и ᴠ 2 - соответствующие скорости при температурах Τ 1 и Τ 2 ;
γ - температурный коэффициент, равен 2-4.
Вместе с тем это правило не объясняет механизма влияния температуры на значение скорости той или иной реакции и не описывает всей совокупности закономерностей. Логично сделать вывод о том, что с повышением температуры, хаотичное движение частиц усиливается и это провоцирует большее число их столкновений. Однако это не особо влияет на эффективность соударения молекул, поскольку она зависит, главным образом, от энергии активации. Также немалую роль в эффективности столкновения частиц имеет их пространственное соответствие друг другу.
Зависимость скорости химической реакции от температуры, учитывающая природу реагентов, подчиняется уравнению Аррениуса:
k = А 0 ·е -Еа/RΤ , где
А о - множитель;
Е а - энергия активации.
Как следует изменить температуру, чтобы скорость химической реакции, у которой температурный коэффициент численно равен 3, выроста в 27 раз?
Решение. Воспользуемся формулой
ᴠ 2 = ᴠ 1 ·γ (Τ2-Τ1)/10 .
Из условия ᴠ 2 /ᴠ 1 = 27, а γ = 3. Найти нужно ΔΤ = Τ 2 -Τ 1 .
Преобразовав исходную формулу получаем:
V 2 /V 1 =γ ΔΤ/10 .
Подставляем значения: 27=3 ΔΤ/10 .
Отсюда понятно, что ΔΤ/10 = 3 и ΔΤ = 30.
Ответ: температуру следует повысить на 30 градусов.
В физической химии скорость химических реакций активно изучает также раздел, называемый катализом. Его интересует, как и почему сравнительно малые количества тех или иных веществ существенно увеличивают скорость взаимодействия других. Такие вещества, которые могут ускорять реакцию, но сами при этом в ней не расходуются, называются катализаторами.
Доказано, что катализаторы меняют механизм самого химического взаимодействия, способствуют появлению новых переходных состояний, для которых характерны меньшие высоты энергетического барьера. То есть они способствуют снижению энергии активации, а значит и увеличению количества эффективных ударений частиц. Катализатор не может вызвать реакцию, которая энергетически невозможна.
Так пероксид водорода способен разлагаться с образованием кислорода и воды:
Н 2 Ο 2 = Н 2 Ο + Ο 2 .
Но эта реакция очень медленная и в наших аптечках она существует в неизменном виде довольно долгое время. Открывая лишь очень старые флаконы с перекисью, можно заметить небольшой хлопок, вызванный давлением кислорода на стенки сосуда. Добавление же всего нескольких крупинок оксида магния спровоцирует активное выделение газа.
Та же реакция разложения перекиси, но уже под действием каталазы, происходит при обработке ран. В живых организмах находится много различных веществ, которые увеличивают скорость биохимических реакций. Их принято называть ферментами.
Противоположный эффект на протекание реакций оказывают ингибиторы. Однако это не всегда плохо. Ингибиторы используют для защиты металлической продукции от коррозии, для продления срока хранения пищи, например, для предотвращения окисления жиров.
В том случае, если взаимодействие идет между соединениями, имеющими разные агрегатные состояния, или же между веществами, которые не способны образовывать гомогенную среду (не смешивающиеся жидкости), то еще и этот фактор влияет на скорость химической реакции существенно. Связано это с тем, что гетерогенные реакции осуществляются непосредственно на границе раздела фаз взаимодействующих веществ. Очевидно, что чем обширнее эта граница, тем больше частиц имеют возможность столкнуться, и тем быстрее идет реакция.
Например, гораздо быстрее идет в виде мелких щепок, нежели в виде бревна. С той же целью многие твердые вещества растирают в мелкий порошок, прежде чем добавлять в раствор. Так, порошкообразный мел (карбонат кальция) быстрее действует с соляной кислотой, чем кусочек той же массы. Однако, помимо увеличения площади, данный прием приводит также к хаотичному разрыву кристаллической решетки вещества, а значит, повышает реакционную способность частиц.
Математически скорость гетерогенной химической реакции находят, как изменение количества вещества (Δν), происходящее в единицу вре-мени (Δt) на единице поверхности
(S): V = Δν/(S·Δt).
Изменение давления в системе оказывает влияние лишь в том случае, когда в реакции принимают участие газы. Повышение давления сопровождается увеличением молекул вещества в единице объема, то есть концентрация его пропорционально возрастает. И наоборот, понижение давление приводит к эквивалентному уменьшению концентрации реагента. В этом случае подходит для вычисления скорости химической реакции формула, соответствующая ЗДМ.
Задача. Как возрастет скорость реакции, описываемой уравнением
2ΝΟ + Ο 2 = 2ΝΟ 2 ,
если объем замкнутой системы уменьшить в три раза (Т=const)?
Решение. При уменьшении объема пропорционально увеличивается давление. Запишем выражения для начальной (V 1) и конечной (V 2) скоростей реакции:
V 1 = k· 2 ·[Ο 2 ] и
V 2 = k·(3·) 2 ·3·[Ο 2 ] = k·9[ΝΟ] 2 ·3[Ο 2 ].
Чтобы найти во сколько раз новая скорость больше начальной, следует разделить левые и правые части выражений:
V 1 /V 2 = (k·9[ΝΟ] 2 ·3[Ο 2 ]) / (k·[ΝΟ] 2 ·[Ο 2 ]).
Значения концентраций и константы скорости сокращаются, и остается:
V 2 /V 1 = 9·3/1 = 27.
Ответ: скорость возросла в 27 раз.
Подводя итог, нужно отметить, что на скорость взаимодействия веществ, а точнее, на количество и качество столкновений их частиц, влияет множество факторов. В первую очередь - это энергия активации и геометрия молекул, которые практически невозможно скорректировать. Что касается остальных условий, то для роста скорости реакции следует:
Кинетика – наука о скоростях химических реакций.
Скорость химической реакции – число элементарных актов химического взаимодействия, протекающих в единицу времени в единицу объема (гомогенные) или на единице поверхности (гетерогенные).
Истинная скорость реакции:
2. Факторы, влияющие на скорость химической реакции
Для гомогенных, гетерогенных реакций:
1) концентрация реагирующих веществ;
2) температура;
3) катализатор;
4) ингибитор.
Только для гетерогенных:
1) скорость подвода реагирующих веществ к поверхности раздела фаз;
2) площадь поверхности.
Главный фактор – природа реагирующих веществ – характер связи между атомами в молекулах реагентов.
NO 2 – оксид азота (IV) – лисий хвост, СО – угарный газ, монооксид углерода.
Если их окислить кислородом, то в первом случае реакция пойдет мгновенно, стоит приоткрыть пробку сосуда, во втором случае реакция растянута во времени.
Концентрация реагирующих веществ будет рассмотрена ниже.
Голубая опалесценция свидетельствует о моменте выпадения серы, чем выше концентрация, тем скорость выше.
Рис. 10
Чем больше концентрации Na 2 S 2 O 3 , тем меньше времени идет реакция. На графике (рис. 10) изображена прямо пропорциональная зависимость. Количественная зависимость скорости реакции от концент-рации реагирующих веществ выражается ЗДМ (законом действующих масс), который гласит: скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ.
Итак, основным законом кинетики является установленный опытным путем закон: скорость реакции пропорциональна концентрации реагирующих веществ, пример: (т.е. для реакции)
Для этой реакции Н 2 + J 2 = 2НJ – скорость можно выразить через изменение концентрации любого из веществ. Если реакция протекает слева направо, то концентрация Н 2 и J 2 будет уменьшаться, концентрация НJ – увеличиваться по ходу реакции. Для мгновенной скорости реакций можно записать выражение:
квадратными скобками обозначается концентрация.
Физический смысл k– молекулы находятся в непрерывном движении, сталкиваются, разлетаются, ударяются о стенки сосуда. Для того, чтобы произошла химическая реакция образования НJ, молекулам Н 2 и J 2 надо столкнуться. Число же таких столкновений будет тем больше, чем больше молекул H 2 и J 2 содержится в объеме, т. е. тем больше будут величины [Н 2 ] и . Но молекулы движутся с разными скоростями, и суммарная кинетическая энергия двух сталкивающихся молекул будет различной. Если столкнутся самые быстрые молекулы Н 2 и J 2 , энергия их может быть такой большой, что молекулы разобьются на атомы йода и водорода, разлетающиеся и взаимодействующие затем с другими молекулами Н 2 + J 2 > 2H+2J, далее будет H + J 2 > HJ + J. Если энергия сталкивающихся молекул меньше, но достаточно велика для ослабления связей H – H и J – J, произойдет реакция образования йодоводорода:
У большинства же сталкивающихся молекул энергия меньше необходимой для ослабления связей в Н 2 и J 2 . Такие молекулы «тихо» столкнутся и также «тихо» разойдутся, оставшись тем, чем они были, Н 2 и J 2 . Таким образом, не все, а лишь часть столкновений приводит к химической реакции. Коэффициент пропорциональности (k) показывает число результативных, приводящих к реакции соударений при концентрациях [Н 2 ] = = 1моль. Величина k– const скорости . Как же скорость может быть постоянной? Да, скоростью равномерного прямолинейного движения называют постоянную векторную величину, равную отношению перемещения тела за любой промежуток времени к значению этого промежутка. Но молекулы движутся хаотически, тогда как же может быть скорость – const? Но постоянная скорость может быть только при постоянной температуре. С ростом температуры увеличивается доля быстрых молекул, столкновения которых приводят к реакции, т. е. увеличивается константа скорости. Но увеличение константы скорости не безгранично. При какой-то температуре энергия молекул станет столь большой, что практически все соударения реагентов будут результативными. При столкновении двух быстрых молекул будет происходить обратная реакция.
Настанет такой момент, когда скорости образования 2НJ из Н 2 и J 2 и разложения будут равны, но это уже химическое равновесие. Зависимость скорости реакции от концентрации реагирующих веществ можно проследить, пользуясь традиционной реакцией взаимодействия раствора тиосульфата натрия с раствором серной кислоты.
Na 2 S 2 O 3 + H 2 SO 4 = Na 2 SO 4 + H 2 S 2 O 3 , (1)
H 2 S 2 O 3 = Sv+H 2 O+SO 2 ^. (2)
Реакция (1) протекает практически мгновенно. Скорость реакции (2) зависит при постоянной температуре от концентрации реагирующего вещества H 2 S 2 O 3 . Именно эту реакцию мы наблюдали – в этом случае скорость измеряется временем от начала сливания растворов до появления опалесценции. В статье Л. М. Кузнецовой описана реакция взаимодействия тиосульфата натрия с соляной кислотой. Она пишет, что при сливании растворов происходит опалесценция (помутнение). Но данное утверждение Л. М. Кузнецовой ошибочно так как опалесценция и помутнение – это разные вещи. Опалесценция (от опал и латинского escentia – суффикс, означающий слабое действие) – рассеяние света мутными средами, обусловленное их оптической неоднородностью. Рассеяние света – отклонение световых лучей, распространяющихся в среде во все стороны от первоначального направления. Коллоидные частицы способны рассеивать свет (эффект Тиндаля – Фарадея) – этим объясняется опалесценция, легкая мутноватость коллоидного раствора. При проведении этого опыта надо учитывать голубую опалесценцию, а затем коагуляцию коллоидной суспензии серы. Одинаковую плотность суспензии отмечают по видимому исчезновению какого-либо рисунка (например, сетки на дне стаканчика), наблюдаемого сверху через слой раствора. Время отсчитывают по секундомеру с момента сливания.
Растворы Na 2 S 2 O 3 x 5H 2 O и H 2 SO 4 .
Первый готовят путем растворения 7,5 г соли в 100 мл H 2 O, что соответствует 0,3 М концентрации. Для приготовления раствора H 2 SO 4 той же концентрации отмерить надо 1,8 мл H 2 SO 4 (к), ? = = 1,84 г/см 3 и растворить ее в 120 мл H 2 O. Приготовленный раствор Na 2 S 2 O 3 разлить в три стакана: в первый – 60 мл, во второй – 30 мл, в третий – 10 мл. Во второй стакан добавить 30 мл H 2 O дистиллированной, а в третий – 50 мл. Таким образом, во всех трех стаканах окажется по 60 мл жидкости, но в первом концентрация соли условно = 1, во втором – Ѕ, а в третьем – 1/6. После того, как будут подготовлены растворы, в первый стакан с раствором соли прилейте 60 мл раствора H 2 SO 4 и включите секундомер, и т. д. Учитывая, что скорость реакции падает с разбавлением раствора Na 2 S 2 O 3 , ее можно определить как величину, обратно пропорциональную времени v = 1/? и построить график, отложив на оси абсцисс концентрацию, а на оси ординат – скорость реакции. Из этого вывод – скорость реакции зависит от концентрации веществ. Полученные данные занесены в таблицу 3. Можно этот опыт выполнить с помощью бюреток, но это требует от выполняющего большой практики, потому что график бывает неправильным.
Таблица 3
Скорость и время реакции
Подтверждается закон Гульдберга-Вааге – профессора химии Гульдерга и молодого ученого Вааге).
Рассмотрим следующий фактор – температуру.
При увеличении температуры скорость большинства химических реакций повышается. Эта зависимость описана правилом Вант-Гоффа: «При повышении температуры на каждые 10 °C скорость химических реакций увеличивается в 2 – 4 раза».
где ? – температурный коэффициент, показывающий, во сколько раз увеличивается скорость реакции при повышении температуры на 10 °C;
v 1 – скорость реакции при температуре t 1 ;
v 2 – скорость реакции при температуре t 2 .
Например, реакция при 50 °С протекает за две минуты, за сколько времени закончится процесс при 70 °С, если температурный коэффициент ? = 2?
t 1 = 120 с = 2 мин; t 1 = 50 °С; t 2 = 70 °С.
Даже небольшое повышение температуры вызывает резкое увеличение скорости реакции активных соударений молекулы. Согласно теории активации, в процессе участвуют только те молекулы, энергия которых больше средней энергии молекул на определенную величину. Эта избыточная энергия – энергия активации. Физический смысл ее – это та энергия, которая необходима для активного столкновения молекул (перестройки орбиталей). Число активных частиц, а следовательно, скорость реакции возрастает с температурой по экспоненциальному закону, согласно уравнению Аррениуса, отражающему зависимость константы скорости от температуры
где А – коэффициент пропорциональности Аррениуса;
k– постоянная Больцмана;
Е А – энергия активации;
R – газовая постоянная;
Т– температура.
Катализатор – вещество, ускоряющее скорость реакции, которое само при этом не расходуется.
Катализ – явление изменения скорости реакции в присутствии катализатора. Различают гомогенный и гетерогенный катализ. Гомогенный – если реагенты и катализатор находятся в одном агрегатном состоянии. Гетерогенный – если реагенты и катализатор в различных агрегатных состояниях. Про катализ см. отдельно (дальше).
Ингибитор – вещество, замедляющее скорость реакции.
Следующий фактор – площадь поверхности. Чем больше поверхность реагирующего вещества, тем больше скорость. Рассмотрим на примере влияние степени дисперсности на скорость реакции.
CaCO 3 – мрамор. Плиточный мрамор опустим в соляную кислоту HCl, подождем пять минут, он растворится полностью.
Порошкообразный мрамор – с ним проделаем ту же процедуру, он растворился через тридцать секунд.
Уравнение обоих процессов одинаково.
CaCO 3 (тв) + HCl(г) = CaCl 2 (тв) + H 2 O(ж) + CO 2 (г) ^.
Итак, при добавлении порошкообразного мрамора время меньше, чем при добавлении плиточного мрамора, при одинаковой массе.
С увеличением поверхности раздела фаз скорость гетерогенных реакций увеличивается.
Скорость реакции зависит от природы и концентрации реагирующих веществ, температуры, давления, присутствия катализатора и его свойств, степени измельчения твердой фазы, от облучения квантами света и других факторов.
1. Природа реагирующих веществ . Под природой реагирующих веществ понимают природу химической связи в молекулах реагентов и ее прочность. Разрыв связей и образование новых связей определяют величину константы скорости, и, тем самым, влияют на процесс протекания реакции.
Величина энергии активации является тем фактором, посредством которого сказывается влияние природы реагирующих веществ на скорость реакции: если энергия активации мала, то скорость такой реакции большая, например, все реакции ионного обмена протекают практически мгновенно, очень велики скорости реакций с участием радикалов; если энергия активации велика, то скорость такой реакции мала, например, это многие реакции между веществами с ковалентными химическими связями, между газообразными веществами.
2. Концентрация реагирующих веществ . Количественную характеристику зависимости скорости реакции от концентрацииустанавливает закон действующих масс (Гульдберг и Вааге, 1867г.): скорость химической реакции прямо пропорциональна концентрации реагирующих веществ, возведенных в степени, равные стехиометрическим коэффициентам в уравнении реакции .
Для реакции аА + bВ =сС + dD математическое выражение закона действующих масс имеет вид:
υ =k·[А] а ·[ В] b или υ =k·С А а ·С В b ,
где v – скорость химической реакции; [А] , [В] или С А , С В – молярные концентрации реагирующих веществ; а, b – стехиометрические коэффициенты реагирующих веществ;k – коэффициент пропорциональности.
Подобные выражения называют кинетическими уравнениями реакций . Коэффициент пропорциональностиk вкинетическом уравнении называют константой скорости . Константа скорости численно равна скорости реакции при концентрациях реагирующих веществ 1 моль/л; k зависит от природы реагирующих веществ, температуры, способа выражения концентрации, но не зависит от величины концентрации реагирующих веществ.
Для гетерогенных реакций концентрации твердых веществ в уравнение скорости не включаются, так как реакция идет только на поверхности раздела фаз. Например, кинетическое уравнение реакции горения угля С(тв)+О 2 (г)=СО 2 (г) будет иметь вид: υ =k·[О 2 ].
Сумма показателей степеней концентраций реагентов в кинетическом уравнении реакции называется порядком химической реакции . Порядок по данному веществу (частный порядок ) определяется как показатель степени при концентрации этого вещества. Например, общий порядок реакции: H 2 + I 2 = 2HI равен двум, частные порядки по водороду и по иоду равны единице, т.к. υ=k · · .
3. Температура. Зависимость скорости реакции от температурывыражается правилом Вант-Гоффа (1884г.): при повышении температуры на каждые десять градусов скорость реакции возрастает примерно в 2 - 4 раза . Математическое выражениеправила Вант-Гоффа:
υ 2 = υ 1 · γ ∆ t/10
где υ 1 и υ 2 – скорость реакции при t 1 и t 2 ; ∆t = t 2 – t 1 ; γ – температурный коэффициент, показывающий, во сколько раз увеличивается скорость реакции при повышении температуры на 10 ºС.
Зависимость константы скорости реакции от температуры выражается уравнением Аррениуса (1889г.):
k = A· е – Е/ RT
где Е – энергия активации, кал/моль; Дж/моль; е – основание натурального логарифма; А – постоянная, не зависящая от температуры; R – газовая постоянная.
Влияние температуры на скорость реакции объясняется тем, что при повышении температуры резко (в геометрической прогрессии) возрастает число активных молекул.
4. Поверхность реагирующих веществ и давление. В гетерогенных реакциях взаимодействие веществ происходит на поверхности раздела фаз, и чем больше площадь этой поверхности, тем выше скорость реакции . В данном случае увеличение поверхности соприкосновения соответствует увеличению концентрации реагирующих веществ.
На скорость реакций с участием газообразных веществ , влияет изменение давления . Уменьшение или увеличение давления приводит к соответствующим изменениям объема, а поскольку количества веществ при этом не изменяются, будут изменяться концентрации реагирующих веществ.
5. Катализ. Одним из методов ускорения химической реакции является катализ, который осуществляется при помощи введения катализаторов, увеличивающих скорость реакции, но не расходующихся в результате ее протекания. Механизм действия катализатора сводится к уменьшению энергии активации реакции, т.е. к уменьшению разности между средней энергией активных молекул и средней энергией молекул исходных веществ. Скорость химической реакции при этом увеличивается. Как правило, термин «катализатор » применяют к тем веществам, которые увеличивают скорость химической реакции. Вещества, которые уменьшают скорость реакции, называют ингибиторами .
Катализаторы принимают самое непосредственное участие в процессе, но по окончании его могут быть выделены из реакционной смеси в исходном количестве. Для катализаторов характерна селективность , т.е. способность влиять на прохождение реакции в определённом направлении, поэтому из одних и тех же исходных веществ могут быть получены различные продукты в зависимости от используемого катализатора.
Особое место занимают биокатализаторы–ферменты , представляющие собой белки. Ферменты оказывают влияние на скорости строго определенных реакций, т. е. обладают очень высокой селективностью. Ферменты ускоряют реакции в миллиарды и триллионы раз при комнатной температуре. При повышенной температуре они теряют свою активность, так как происходит денатурация белков.
Различают два типа катализа: гомогенный катализ , когда катализатор и исходные вещества находятся в одной фазе, и гетерогенный ,когдакатализатор и исходные вещества находятся в разных фазах, т.е. реакции протекают на поверхности катализатора. Катализатор не влияет на состояние равновесия в системе, а лишь изменяет скорость, с которой достигается это состояние. Это следует из того, что равновесию отвечает минимум изобарно-изотермического потенциала (энергии Гиббса), и константа равновесия имеет одинаковое значение, как в присутствии катализатора, так и без него.
Действие гомогенного катализатора заключается в том, что он реагирует с одним из исходных веществ с образованием промежуточного соединения, которое, в свою очередь, вступает в химические реакции с другим исходным веществом, давая желаемый продукт реакции и «освобождая» катализатор. Таким образом, при гомогенном катализе процесс протекает в несколько стадий, но с меньшими значениями энергии активации для каждой стадии, чем для прямого некаталитического процесса.
Пусть вещество A реагирует с веществом B, образуя соединение AB:
Реакция протекает с незначительной скоростью. При добавлении катализатора K протекают реакции: A + K = AK и AK + B = AB + K .
Сложив эти два уравнения, получим: A + B = AB .
Примером реакции, протекающей с участием гомогенного катализатора, может служить реакция окисления оксида серы (IV) до оксида серы (VI): без катализатора: SO 2 + 0,5O 2 = SO 3 ;
с катализатором NO 2: SO 2 + NO 2 = SO 3 + NO , NO + 0,5O 2 = NO 2 .
Действие гетерогенного катализатора заключается в том, что молекулы газа (или жидкости) адсорбируются на поверхности кристалла катализатора, что приводит к перераспределению электронной плотности в адсорбированных молекулах и ослаблению химической связи в них вплоть до полной диссоциации молекулы на атомы. Это значительно облегчает взаимодействие адсорбированных молекул (атомов) реагирующих веществ между собой. Чем больше поверхность, тем эффективнее катализатор. В качестве гетерогенных катализаторов широко используются металлы (никель, платина, палладий, медь), кристаллические алюмосиликаты цеолиты, Al 2 O 3 , Al 2 (SO 4) 3 и др.
Статьи по теме: | |
Отделы водорослей К какому царству относятся сине зеленые водоросли
Среди существующих ныне организмов встречаются такие, о принадлежности... Что такое система вообще
В силу того, что системный анализ направлен на решение любых проблем... Курс выживания в дикой природе Подмосковья: как это было
В мае 2012 года в средствах массовой информации появилась информация о... |