Как решить уравнение 7. Линейные уравнения. Решение, примеры. Когда корней нет

Как решить уравнение 7. Линейные уравнения. Решение, примеры. Когда корней нет

В курсе математики 7 класса впервые встречаются с уравнениями с двумя переменными , но изучаются они лишь в контексте систем уравнений с двумя неизвестными. Именно поэтому из поля зрения выпадает целый ряд задач, в которых на коэффициенты уравнения введены некоторые условия, их ограничивающие. Кроме того, остаются без внимания и методы решения задач типа «Решить уравнение в натуральных или целых числах», хотя в материалах ЕГЭ и на вступительных экзаменах задачи такого рода встречаются все чаще и чаще.

Какое уравнение будет называться уравнением с двумя переменными?

Так, например, уравнения 5x + 2y = 10, x 2 + y 2 = 20 или xy = 12 являются уравнениями с двумя переменными.

Рассмотрим уравнение 2x – y = 1. Оно обращается в верное равенство при x = 2 и y = 3, поэтому эта пара значений переменных является решением рассматриваемого уравнения.

Таким образом, решением любого уравнения с двумя переменными является множество упорядоченных пар (x; y), значений переменных, которые это уравнение обращают в верное числовое равенство.

Уравнение с двумя неизвестными может:

а) иметь одно решение. Например, уравнение x 2 + 5y 2 = 0 имеет единственное решение (0; 0);

б) иметь несколько решений. Например, (5 -|x|) 2 + (|y| – 2) 2 = 0 имеет 4 решения: (5; 2), (-5; 2), (5; -2), (-5; -2);

в) не иметь решений. Например, уравнение x 2 + y 2 + 1 = 0 не имеет решений;

г) иметь бесконечно много решений. Например, x + y = 3. Решениями этого уравнения будут являться числа, сумма которых равна 3. Множество решений данного уравнения можно записать в виде (k; 3 – k), где k – любое действительное число.

Основными методами решения уравнений с двумя переменными являются методы, основанные на разложении выражений на множители, выделение полного квадрата, использование свойств квадратного уравнения, ограниченности выражений, оценочные методы. Уравнение, как правило, преобразовывают к виду, из которого можно получить систему для нахождения неизвестных.

Разложение на множители

Пример 1.

Решить уравнение: xy – 2 = 2x – y.

Решение.

Группируем слагаемые с целью разложения на множители:

(xy + y) – (2x + 2) = 0. Из каждой скобки вынесем общий множитель:

y(x + 1) – 2(x + 1) = 0;

(x + 1)(y – 2) = 0. Имеем:

y = 2, x – любое действительное число или x = -1, y – любое действительное число.

Таким образом, ответом являются все пары вида (x; 2), x € R и (-1; y), y € R.

Равенство нулю неотрицательных чисел

Пример 2.

Решить уравнение: 9x 2 + 4y 2 + 13 = 12(x + y).

Решение.

Группируем:

(9x 2 – 12x + 4) + (4y 2 – 12y + 9) = 0. Теперь каждую скобку можно свернуть по формуле квадрата разности.

(3x – 2) 2 + (2y – 3) 2 = 0.

Сумма двух неотрицательных выражений равна нулю, только если 3x – 2 = 0 и 2y – 3 = 0.

А значит, x = 2/3 и y = 3/2.

Ответ: (2/3; 3/2).

Оценочный метод

Пример 3.

Решить уравнение: (x 2 + 2x + 2)(y 2 – 4y + 6) = 2.

Решение.

В каждой скобке выделим полный квадрат:

((x + 1) 2 + 1)((y – 2) 2 + 2) = 2. Оценим значение выражений, стоящих в скобках.

(x + 1) 2 + 1 ≥ 1 и (y – 2) 2 + 2 ≥ 2, тогда левая часть уравнения всегда не меньше 2. Равенство возможно, если:

(x + 1) 2 + 1 = 1 и (y – 2) 2 + 2 = 2, а значит x = -1, y = 2.

Ответ: (-1; 2).

Познакомимся с еще одним методом решения уравнений с двумя переменными второй степени. Этот метод заключается в том, что уравнение рассматривается как квадратное относительно какой-либо переменной .

Пример 4.

Решить уравнение: x 2 – 6x + y – 4√y + 13 = 0.

Решение.

Решим уравнение как квадратное относительно x. Найдем дискриминант:

D = 36 – 4(y – 4√y + 13) = -4y + 16√y – 16 = -4(√y – 2) 2 . Уравнение будет иметь решение только при D = 0, т. е. в том случае, если y = 4. Подставляем значение y в исходное уравнение и находим, что x = 3.

Ответ: (3; 4).

Часто в уравнениях с двумя неизвестными указывают ограничения на переменные .

Пример 5.

Решить уравнение в целых числах: x 2 + 5y 2 = 20x + 2.

Решение.

Перепишем уравнение в виде x 2 = -5y 2 + 20x + 2. Правая часть полученного уравнения при делении на 5 дает в остатке 2. Следовательно, x 2 не делится на 5. Но квадрат числа, не делящегося на 5, дает в остатке 1 или 4. Таким образом, равенство невозможно и решений нет.

Ответ: нет корней.

Пример 6.

Решить уравнение: (x 2 – 4|x| + 5)(y 2 + 6y + 12) = 3.

Решение.

Выделим полные квадраты в каждой скобке:

((|x| – 2) 2 + 1)((y + 3) 2 + 3) = 3. Левая часть уравнения всегда больше или равна 3. Равенство возможно при условии |x| – 2 = 0 и y + 3 = 0. Таким образом, x = ± 2, y = -3.

Ответ: (2; -3) и (-2; -3).

Пример 7.

Для каждой пары целых отрицательных чисел (x; y), удовлетворяющих уравнению
x 2 – 2xy + 2y 2 + 4y = 33, вычислить сумму (x + y). В ответе указать наименьшую из сумм.

Решение.

Выделим полные квадраты:

(x 2 – 2xy + y 2) + (y 2 + 4y + 4) = 37;

(x – y) 2 + (y + 2) 2 = 37. Так как x и y – целые числа, то их квадраты также целые числа. Сумму квадратов двух целых чисел, равную 37, получим, если складываем 1 + 36. Следовательно:

(x – y) 2 = 36 и (y + 2) 2 = 1

(x – y) 2 = 1 и (y + 2) 2 = 36.

Решая эти системы и учитывая, что x и y – отрицательные, находим решения: (-7; -1), (-9; -3), (-7; -8), (-9; -8).

Ответ: -17.

Не стоит отчаиваться, если при решении уравнений с двумя неизвестными у вас возникают трудности. Немного практики, и вы сможете справиться с любыми уравнениями.

Остались вопросы? Не знаете, как решать уравнения с двумя переменными?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

для решения математики. Быстро найти решение математического уравнения в режиме онлайн . Сайт www.сайт позволяет решить уравнение почти любого заданного алгебраического , тригонометрического или трансцендентного уравнения онлайн . При изучении практически любого раздела математики на разных этапах приходится решать уравнения онлайн . Чтобы получить ответ сразу, а главное точный ответ, необходим ресурс, позволяющий это сделать. Благодаря сайту www.сайт решение уравнений онлайн займет несколько минут. Основное преимущество www.сайт при решении математических уравнений онлайн - это скорость и точность выдаваемого ответа. Сайт способен решать любые алгебраические уравнения онлайн , тригонометрические уравнения онлайн , трансцендентные уравнения онлайн , а также уравнения с неизвестными параметрами в режиме онлайн . Уравнения служат мощным математическим аппаратом решения практических задач. C помощью математических уравнений можно выразить факты и соотношения, которые могут показаться на первый взгляд запутанными и сложными. Неизвестные величины уравнений можно найти, сформулировав задачу на математическом языке в виде уравнений и решить полученную задачу в режиме онлайн на сайте www.сайт. Любое алгебраическое уравнение , тригонометрическое уравнение или уравнения содержащие трансцендентные функции Вы легко решите онлайн и получите точный ответ. Изучая естественные науки, неизбежно сталкиваешься с необходимостью решения уравнений . При этом ответ должен быть точным и получить его необходимо сразу в режиме онлайн . Поэтому для решения математических уравнений онлайн мы рекомендуем сайт www.сайт, который станет вашим незаменимым калькулятором для решения алгебраических уравнений онлайн , тригонометрических уравнений онлайн , а также трансцендентных уравнений онлайн или уравнений с неизвестными параметрами. Для практических задач по нахождению корней различных математических уравнений ресурса www.. Решая уравнения онлайн самостоятельно, полезно проверить полученный ответ, используя онлайн решение уравнений на сайте www.сайт. Необходимо правильно записать уравнение и моментально получите онлайн решение , после чего останется только сравнить ответ с Вашим решением уравнения. Проверка ответа займет не более минуты, достаточно решить уравнение онлайн и сравнить ответы. Это поможет Вам избежать ошибок в решении и вовремя скорректировать ответ при решении уравнений онлайн будь то алгебраическое , тригонометрическое , трансцендентное или уравнение с неизвестными параметрами.

Уравнение – одно из краеугольных понятий всей математики. Как школьной, так и высшей. Имеет смысл разобраться, правда? Тем более, что это очень простое понятие. Ниже сами убедитесь. :) Так что же такое уравнение?

То, что это слово однокоренное со словами "равный", "равенство", возражений, думаю, ни у кого не вызывает.

Уравнение – это два математических выражения, соединённых между собой знаком "=" (равно).

Но… не каких попало. А таких, в которых (хотя бы в одном) содержится неизвестная величина . Или, по-другому, переменная величина. Или, сокращённо, просто "переменная". Которая обычно обозначается буквой "х" .

Переменных может быть одна, может быть несколько. В школьной математике чаще всего рассматриваются уравнения с одной переменной. И мы тоже пока что будем рассматривать уравнения с одной переменной. С двумя переменными или более – в специальных уроках.

Что значит решить уравнение?

Переменная, входящая в уравнение, может принимать любые допустимые математикой значения. На то она и переменная. :) При каких-то значениях переменной получается верное числовое равенство, а при каких-то – нет.

Так вот:

Решить уравнение означает найти ВСЕ такие значения переменной, при подстановке которых в исходное уравнение получается верное равенство. Или, более научно, верное тождество. Или доказать, что таких значений переменной не существует.

Что такое верное равенство? Это равенство, не вызывающее сомнений даже у человека, абсолютно не отягощённого глубокими математическими познаниями. Например, 5=5, 0=0, -10=-10. И так далее. :)

Значения переменной, при подстановке которых достигается это самое верное равенство , называются очень красиво и научно - корни уравнения .

Корень может быть один, может быть несколько. А может быть и бесконечно много корней – целый интервал или даже вообще вся числовая прямая от –∞ до +∞ . Да, такое тоже бывает! Всё от конкретного уравнения зависит.)

А бывает и такое, что нельзя найти такие иксы, которые давали бы нам верное равенство. Принципиально нельзя. По определённым причинам. Нету таких иксов…

В таких случаях обычно говорят, что уравнение не имеет корней.

Для чего нужны уравнения?

Вопрос смешной. Для жизни! В школе, как правило, уравнения нужны для решения текстовых задач . Это, напоминаю, задачи , на работу, на проценты и многие другие.

А во взрослой жизни без уравнений невозможны было бы ответить даже на самые обычные, но жизненно важные вопросы повседневности: какая будет погода завтра, выдержит ли заданную нагрузку здание. Или лифт. Или самолёт. Куда попадёт ракета… И не было бы сейчас среди нас ни синоптиков, ни инженеров, ни бухгалтеров, ни экономистов, ни программистов… За ненадобностью. Внушает?)

Почему это так? А потому, что уравнениями описываются почти все известные человеку природные явления и процессы. Изменение давления и температуры воздуха с высотой, закон всемирного тяготения, размножение бактерий, радиоактивный распад, химические реакции, электричество, спрос и предложение – в основе всего этого лежат математические уравнения! Простые, сложные – всякие. Какое явление или ситуация, такое и уравнение.)

Итак, запоминаем:

Уравнения – очень мощный и универсальный инструмент для решения самых разных прикладных задач.

А какие бывают уравнения?

Уравнений в математике несметное количество. Самых разных видов. Но всё многообразие уравнений можно условно разделить всего на 4 категории:

1. ,

2. ,

3. (или дробно-рациональные),

4. Прочие.

Разные категории уравнений требуют и разного подхода к их решению: линейные уравнения решаются одним способом, квадратные – другим, дробные – третьим, тригонометрические, логарифмические, показательные и прочие – тоже решаются своими методами.

Прочих уравнений, разумеется, больше всего, да...) Это и иррациональные, и тригонометрические , и , и , и многие другие уравнения. И даже дифференциальные уравнения (для студентов), где роль неизвестного играет не число, а функция. Или даже семейство функций. :)

В соответствующих уроках мы подробно разберём все эти типы уравнений. А здесь у нас – базовые приёмы и правила.

Называются эти правила – тождественные (или – равносильные) преобразования уравнений . Их всего два. И нигде их не обойти. Так что знакомимся!

Как решать уравнения? Тождественные (равносильные) преобразования уравнений.

Решение любого уравнения заключается в поэтапном преобразовании входящих в него выражений. Но преобразований не абы каких, а таких, чтобы от шага к шагу суть всего уравнения не менялась . Несмотря на то, что после каждого преобразования уравнение будет видоизменяться и, в конечном счёте, станет совсем не похоже на исходное.

Такие преобразования в математике называются равносильными или тождественными . Их довольно много, но среди всего многообразия тождественных преобразований уравнений выделяется два базовых . О них и пойдёт речь в этом уроке. Да-да, всего два! Но – крайне важных! И каждое из них заслуживает отдельного внимания.

Применение этих двух тождественных преобразований в том или ином порядке гарантирует успех в решении 99% уравнений математики. Заманчиво, правда?

Итак, вперёд!

Первое тождественное преобразование:

К обеим частям уравнения можно прибавить (или отнять) любое (но одинаковое!) число или выражение (в том числе и с переменной). Суть уравнения от этого не изменится.

Это преобразование вы применяете всюду, наивно думая, что переносите какие-то члены из одной части уравнения в другую, меняя знаки. :)

Например, такое крутое уравнение:

Тут и думать нечего, перебрасываем тройку вправо, меняя минус на плюс:

А что же происходит в действительности? А на самом деле вы… прибавляете к обеим частям уравнения тройку!

Вот что у вас происходит:

И результат получается тем же самым:

Вот и всё. Слева остаётся чистый икс (чего мы, собственно, и добиваемся), а справа – что уж получится. Но самое главное то, что от прибавления тройки к обеим частям суть всего уравнения не изменилась!

Дело в том, что привычный нам перенос слагаемых из одной части в другую со сменой знака – это просто сокращённый вариант первого тождественного преобразования.

И зачем нам так глубоко копать? В уравнениях – незачем. Переносите себе спокойно и не парьтесь. Только знаки менять не забывайте.) А вот в неравенствах привычка к переносу может и слегка обескуражить, да…

Это было первое тождественное преобразование. Переходим ко второму.

Второе тождественное преобразование:

Обе части уравнения можно умножить (разделить) на одно и то же отличное от нуля число или выражение.

Это тождественное преобразование мы вы постоянно применяете, когда решаете что-нибудь совсем уж жуткое типа:

Тут каждому ясно, что х=3 . А вот как вы получили этот ответ? Подобрали? Угадали?

Чтобы не подбирать и не гадать (мы с вами математики, а не гадалки), нужно понять, что вы просто поделили обе части уравнения на четвёрку. Которая нам и мешает.

Вот так:

Эта палка с делением означает, что на четвёрку делятся обе части нашего уравнения. Через дроби эта процедура выглядит так:

Слева четвёрки благополучно сокращаются, остаётся икс в гордом одиночестве. А справа при делении 12 на 4 получается, понятное дело, тройка. :)

И все дела.)

Звучит невероятно, но эти два (всего два!) простых преобразования лежат в основе решения всех уравнений математики! Да-да, именно всех , я нисколько не преувеличиваю! От линейных и квадратных в школе до дифференциальных в ВУЗе.)

Ну что, посмотрим на тождественные преобразования уравнений в действии?

Применение тождественных преобразований к решению уравнений.

Начнём с первого тождественного преобразования. Переноса вправо-влево.

Пример для новичков:

1 – х = 3 – 2х

Дело нехитрое. Это . Работаем прямо по заклинанию: "С иксами влево, без иксов – вправо".

Эта мантра – универсальная инструкция по применению первого тождественного преобразования. Вот и смотрим на уравнение. Какое слагаемое с иксом у нас справа? Что? ? Не-а!) Справа у нас -2х (минус два икс)! Поэтому при переносе в левую часть минус поменяется на плюс:

1 – х +2х = 3

Полдела сделано, иксы собрали слева. Осталось все числа собрать справа. Слева в уравнении стоит единичка. Опять вопрос – с каким знаком? Ответ "с никаким" не катит.) Слева перед единицей и вправду ничего не написано. А это значит, что перед ней стоит знак "плюс" . Так уж в математике повелось: ничего не написано – значит, плюс.)

И поэтому вправо единичка перенесётся уже с минусом :

-х + 2х = 3 - 1

Вот почти и всё. Слева приводим подобные, а справа – считаем. И получаем:

х = 2

Это было совсем примитивное уравнение.

Теперь пример покруче, для старшеклассников:

Решить уравнение:

Уравнение . Ну и что? Какая разница? Всё равно первым шагом делаем базовое тождественное преобразование ("С иксами влево ….") . Для этого слагаемое с иксом (то есть, - log 3 x ) переносим влево. Со сменой знака:

А числовое выражение (log 3 4 ) переносим вправо. Также со сменой знака, разумеется:

Вот и всё. Справа получилась чистая формула. Кто дружит с , тот в уме дорешает уравнение и получит:

х=3

Что? Хотите синусы? Пожалуйста, вот вам синусы:

И снова всё то же самое! Выполняем первое тождественное преобразование – переносим sin x влево (с минусом), а -0,25 переносим вправо (с плюсом):

Получили простейшее тригонометрическое уравнение с синусом, решить которое (для знающих) также не составляет никакого труда.

Видите, насколько универсально первое равносильное преобразование! Встречается везде и всюду и не обойти его никак… Именно поэтому так важно уметь его делать на автомате и без ошибок.

Собственно, ошибиться здесь можно лишь в одном – забыть сменить знак при переносе. Что и происходит сплошь и рядом. Внимательность никто не отменял, да…)

Ну что, продолжаем наши игры? Развлекаемся теперь со вторым преобразованием!)

Решить уравнение:

7х=28

Крутяк, прямо скажем.) Ладно, это эмоции…

Смотрим и соображаем: что нам мешает в этом уравнении? Что-что… Да семёрка мешает! Хорошо бы от неё избавиться. Да так, чтобы исходное уравнение не испортить.)

Но как? Перенести вправо? Ээээ… Стоп! Нельзя.) Семёрка с иксом умножением связана. Коэффициент, видите ли.) Нельзя её оторвать от икса и вправо перенести. Вот всё выражение целиком – пожалуйста (вопрос – зачем?). А семёрку отдельно – никак нет.

Самое время про умножение/деление вспомнить! Нам ведь в ответе чистый икс нужен, не так ли? А семёрка – мешает. Вот и делим левую часть на семь. "Очищаем" икс от коэффициента. Так нам надо. Но тогда и правую часть тоже надо поделить на семь: этого уже математика требует. Что уж там получится, то и получится. Но пример хороший. Я старался.) 28 на 7 замечательно делится. Получится 4.

Ответ: х=4

Или такое уравнение:

Что здесь нам мешает? Дробь 1/6, не так ли? Вот давайте и избавимся от неё. Безопасно для уравнения.) Как? Ну, можно поступить аналогично – поделить обе части на эту самую 1/6. Но в уме это не очень удобно. Кое-кто и запутается…

Но мы же не только делить, мы ещё и умножать умеем!) Вспоминаем из младших классов, после какого действия у нас пропадает дробь? Правильно! Дробь у нас пропадает при умножении на число, равное (или кратное) её знаменателю. Вот и умножим обе части нашего уравнения на 6. Слева всё равно чистый икс получится, а умножение правой части на 6 – не самая трудная работа.)

Вот и всё.) Умножение обеих частей уравнения на нужное число позволяет сразу избавляться от дробей, минуя промежуточные выкладки, в которых, между прочим, запросто можно и ошибок наляпать. Короче дорога – меньше ошибок!

Теперь снова на машину времени и - в старшие классы:

Решить уравнение:

Чтобы добраться до икса и тем самым решить это крутое тригонометрическое уравнение , нам надо сначала получить слева чистый косинус, безо всяких коэффициентов. А двойка мешает. :) Вот и делим на 2 всю левую часть:

Но тогда и правую часть тоже придётся разделить на двойку: это уже МАТЕМАТИКЕ надо. Делим:

Получили справа табличное значение косинуса . И теперь уравнение решается за милую душу.)

Вот и вся премудрость. Как видите, тождественные преобразования уравнений – штука полезная. И при этом не самая сложная. Перенос да умножение/деление. Однако далеко не у всех они получаются с первого раза и без ошибок, ох не у всех… Основные проблемы здесь две.

Проблема первая (для малоопытных):

Иногда ученик думает, что упрощение уравнений делается по одному, раз и навсегда установленному правилу. И никак не может уловить и понять это правило: в каких-то примерах начинают с домножения (или деления), в каких-то – с переноса. Где-то три раза переносят и ни разу не домножают…

Например, такое линейное уравнение:

10х + 5 = 5х – 20

С чего начинать? Можно начать с переноса:

10х – 5х = -20 - 5

А можно сначала поделить обе части на пятёрку, а затем уж переносить. Тогда сразу числа попроще станут:

Как видим, и так и сяк решать можно. И это – в примитивном примере! Вот и возникает у неопытных учеников вопрос: "Как правильно?"

По-всякому правильно! Кому как удобнее. :) Универсального рецепта здесь нет и быть не может. Математика предлагает вам на выбор два вида преобразований уравнений. А порядок этих самых преобразований зависит исключительно от исходного уравнения, а также от личных предпочтений и привычек решающего.

Проблема вторая (для всех...ну… почти):

Ошибки в вычислениях. В преобразованиях постоянно приходится перемножать скобки. Заключать выражения в скобки и раскрывать скобки. Умножать и делить дроби. Работать со степенями… Короче, в наличии весь набор элементарных действий математики. Со всеми вытекающими…

Обе эти проблемы устраняются только одним способом – практикой. Исчезают сомнения и ошибки. Примеры становятся проще, задания - легче. И в итоге не математика командует вами, а вы – математикой. :)

Как научиться решать простые и сложные уравнения

Уважаемые родители!

Без базовой математической подготовки невозможна постановка образования современного человека. В школе математика служит опорным предметом для многих смежных дисциплин. В послешкольной жизни реальной необходимостью становится непрерывное образование, что требует базовой общешкольной подготовки, в том числе и математической.

В начальной школе закладываются не только знания по основным темам, но и развивается логическое мышление, воображение и пространственные представления, а также формируется интерес к данному предмету.

Соблюдая принцип преемственности, мы сделаем упор на важнейшую тему, а именно «Взаимосвязь компонентов действий при решении составных уравнений».

С помощью данного урока можно без труда научиться решать усложненные уравнения. На уроке вы подробно познакомитесь с пошаговой инструкцией решения усложненных уравнений.

Многих, родителей ставит в тупик вопрос – как же заставить детей научиться решать простые и сложные уравнения. Если уравнения простые - это еще пол беды, но ведь бывают и сложные – например интегральные. Кстати, для сведения, есть и такие уравнения, над решением которых бьются лучшие умы нашей планеты и за решение которых выдаются очень весомые денежные премии. Например, если вспомнить Перельмана и невостребованную им денежную премию в размере нескольких миллионов.

Однако вернемся для начала к простым математическим уравнениям и повторим виды уравнений и названия компонентов. Небольшая разминка:

_________________________________________________________________________

РАЗМИНКА

    Найди лишнее число в каждом столбике:

2) Какого слова не хватает в каждом столбике?

3) Соедините слова из первого столбика со словами из 2 столбика.

«Уравнение» «Равенство»

4) Как вы объясните, что такое «равенство»?

5) А «уравнение»? Это равенство? Что в нем особенного?

слагаемое сумма

уменьшаемое разность

вычитаемое произведение

множитель равенство

делимое

уравнение

Вывод: Уравнение – это равенство с переменной, значение которой надо найти.

_______________________________________________________________________

Предлагаю каждой группе написать на листке фломастером уравнения: (на доску)

1 группе - с неизвестным слагаемым;

2 группе - с неизвестным уменьшаемым;

3 группе – с неизвестным вычитаемым;

4 группе – с неизвестным делителем;

5 группе – с неизвестным делимым;

6 группе – с неизвестным множителем.

1 группа х + 8 = 15

2 группа х – 8 = 7

3 группа 48 – х = 36

4 группа 540: х = 9

5 группа х: 15 = 9

6 группа х * 10 = 360

Один из группы должен на математическом языке прочитать свое уравнение и прокомментировать их решение, т. е. проговорить выполняемую операцию с известными компонентами действий (алгоритм).

Вывод: Умеем решать простые уравнения всех видов по алгоритму, читать и записывать буквенные выражения.

Предлагаю решить задачу, в которой появляется новый тип уравнений.

Х + 2кг 5кг и 3 кг

С какой величиной связан рисунок?

Составьте и запишите по этому рисунку уравнение:

Подберите для полученного уравнения подходящее уравнение:

х + а = в а: х = в

х: а = в х * а = в

х – а = в а – х = в

Вывод: Познакомились с решением уравнений, в одной из частей которых содержится числовое выражение, значение которого надо найти и получить простое уравнение.

________________________________________________________________________

Рассмотрим еще один вариант уравнения, решение которого сводится к решению цепочки простых уравнений. Вот один из введения составных уравнений.

а + в * с (х – у) : 3 2 * d + (m – n)

Являются ли уравнениями записи?

Почему?

Как называют такие действия?

Прочитайте их, называя последнее действие:

Нет. Это не уравнения, т. к. в уравнении должен быть знак «=».

Выражения

а + в * с - сумма числа а и произведения чисел в и с;

(х – у) : 3 - частное разности чисел х и у;

2 * d + (m – n) - сумма удвоенного числа d и разности чисел m и n.

Предлагаю каждому записать на математическом языке предложение:

Произведение разности чисел х и 4 и числа 3 равно 15.

Запишите на математическом языке предложение: произведение разности чисел х и 4 и числа 3 равно 15

(х – 4) * 3 = 15

ВЫВОД: Возникшая проблемная ситуация мотивирует постановку цели урока: научиться решать уравнения в которых неизвестный компонент является выражением. Такие уравнения являются составными уравнениями.

__________________________________________________________________________

А может нам помогут уже изученные виды уравнений? (алгоритмы)

На какое из известных уравнений похоже наше уравнение? Х * а = в

ОЧЕНЬ ВАЖНЫЙ ВОПРОС : Чем является выражение в левой части – суммой, разностью, произведением или частным?

(х – 4) * 3 = 15 (Произведением)

Почему? (т.к. последнее действие – умножение)

Вывод: Такие уравнения еще не рассматривались. Но можно решить, если на выражение х – 4 наложить карточку (у - игрек), и получится уравнение, которое легко можно решить, используя простой алгоритм нахождения неизвестного компонента.

При решении составных уравнений необходимо на каждом шаге осуществлять выбор действия на автоматизированном уровне, комментируя, называя компоненты действия.

Найти последнее действие

Выделить неизвестный компонент

Применить правило

Упростить часть

Корень уравнения найден?

Да

Сделать проверку

(у – 5) * 4 = 28 у – 5 = 28: 4
у – 5 = 7
у = 5 +7
у = 12
(12 - 5) * 4 = 28
28 = 28 (и)

Вывод: В классах с разной подготовкой эта работа может быть организована по-разному. В более подготовленных классах даже для первичного закрепления могут быть использованы выражения, в которых не два, а три и более действий, но их решение требует большего числа шагов с каждым шагом упрощая уравнение, до тех пор пока не получится простое уравнение. И каждый раз можно наблюдать, как меняется неизвестный компонент действий.

_____________________________________________________________________________

ЗАКЛЮЧЕНИЕ:

Когда речь идёт о чём-нибудь очень простом, понятном, мы часто говорим: «Дело ясно, как дважды два - четыре!».

А ведь прежде чем додуматься до того, что дважды два - четыре, людям пришлось учиться много, много тысяч лет.

Многие правила из школьных учебников арифметики и геометрии были известны древним грекам две с лишним тысячи лет назад.

Всюду, где надо что-то считать, измерять, сравнивать, без математики не обойтись.

Трудно представить, как жили бы люди, если бы не умели считать, измерять, сравнивать. Этому учит математика.

Сегодня Вы окунулись в школьную жизнь, побывали в роли учеников и я предлагаю Вам, уважаемые родители, оценить свои умения по шкале:

Мои умения

Дата и оценка

Компоненты действий.

Составление уравнения с неизвестным компонентом.

Чтение и запись выражений.

Находить корень уравнения в простом уравнении.

Находить корень уравнения, в одной из частей которых содержится числовое выражение.

Находить корень уравнения, в которых неизвестный компонент действия является выражением.

Уравнения

Как решать уравнения?

В этом разделе мы вспомним (или изучим – уж кому как) самые элементарные уравнения. Итак, что такое уравнение? Говоря человеческим языком, это какое-то математическое выражение, где есть знак равенства и неизвестное. Которое, обычно, обозначается буквой «х» . Решить уравнение - это найти такие значения икса, которые при подстановке в исходное выражение, дадут нам верное тождество. Напомню, что тождество – это выражение, которое не вызывает сомнения даже у человека, абсолютно не отягощенного математическими знаниями. Типа 2=2, 0=0, ab=ab и т.д. Так как решать уравнения? Давайте разберёмся.

Уравнения бывают всякие (вот удивил, да?). Но всё их бесконечное многообразие можно разбить всего на четыре типа.

4. Все остальные.)

Всех остальных, разумеется, больше всего, да...) Сюда входят и кубические, и показательные, и логарифмические, и тригонометрические и всякие другие. С ними мы в соответствующих разделах плотно поработаем.

Сразу скажу, что иногда и уравнения первых трёх типов так накрутят, что и не узнаешь их… Ничего. Мы научимся их разматывать.

И зачем нам эти четыре типа? А затем, что линейные уравнения решаются одним способом, квадратные другим, дробные рациональные - третьим, а остальные не решаются вовсе! Ну, не то, чтобы уж совсем никак не решаются, это я зря математику обидел.) Просто для них существуют свои специальные приёмы и методы.

Но для любых (повторяю - для любых! ) уравнений есть надёжная и безотказная основа для решения. Работает везде и всегда. Эта основа - Звучит страшно, но штука очень простая. И очень (очень!) важная.

Собственно, решение уравнения и состоит из этих самых преобразований. На 99%. Ответ на вопрос: "Как решать уравнения? " лежит, как раз, в этих преобразованиях. Намёк понятен?)

Тождественные преобразования уравнений.

В любых уравнениях для нахождения неизвестного надо преобразовать и упростить исходный пример. Причем так, чтобы при смене внешнего вида суть уравнения не менялась. Такие преобразования называются тождественными или равносильными.

Отмечу, что эти преобразования относятся именно к уравнениям. В математике ещё имеются тождественные преобразования выражений. Это другая тема.

Сейчас мы с вами повторим все-все-все базовые тождественные преобразования уравнений.

Базовые потому, что их можно применять к любым уравнениям – линейным, квадратным, дробным, тригонометрическим, показательным, логарифмическим и т.д. и т.п.

Первое тождественное преобразование: к обеим частям любого уравнения можно прибавить (отнять) любое (но одно и то же!) число или выражение (в том числе и выражение с неизвестным!). Суть уравнения от этого не меняется.

Вы, между прочим, постоянно пользовались этим преобразованием, только думали, что переносите какие-то слагаемые из одной части уравнения в другую со сменой знака. Типа:

Дело знакомое, переносим двойку вправо, и получаем:

На самом деле вы отняли от обеих частей уравнения двойку. Результат получается тот же самый:

х+2 - 2 = 3 - 2

Перенос слагаемых влево-вправо со сменой знака есть просто сокращённый вариант первого тождественного преобразования. И зачем нам такие глубокие познания? – спросите вы. В уравнениях низачем. Переносите, ради бога. Только знак не забывайте менять. А вот в неравенствах привычка к переносу может и в тупик поставить….

Второе тождественное преобразование : обе части уравнения можно умножить (разделить) на одно и то же отличное от нуля число или выражение. Здесь уже появляется понятное ограничение: на ноль умножать глупо, а делить и вовсе нельзя. Это преобразование вы используете, когда решаете что-нибудь крутое, типа

Понятное дело, х = 2. А вот как вы его нашли? Подбором? Или просто озарило? Чтобы не подбирать и не ждать озарения, нужно понять, что вы просто поделили обе части уравнения на 5. При делении левой части (5х) пятёрка сократилась, остался чистый икс. Чего нам и требовалось. А при делении правой части (10) на пять, получилась, знамо дело, двойка.

Вот и всё.

Забавно, но эти два (всего два!) тождественных преобразования лежат в основе решения всех уравнений математики. Во как! Имеет смысл посмотреть на примерах, что и как, правда?)

Примеры тождественных преобразований уравнений. Основные проблемы.

Начнём с первого тождественного преобразования. Перенос влево-вправо.

Пример для младшеньких.)

Допустим, надо решить вот такое уравнение:

3-2х=5-3х

Вспоминаем заклинание: "с иксами - влево, без иксов - вправо!" Это заклинание - инструкция по применению первого тождественного преобразования.) Какое выражение с иксом у нас справа? ? Ответ неверный! Справа у нас - ! Минус три икс! Стало быть, при переносе влево, знак поменяется на плюс. Получится:

3-2х+3х=5

Так, иксы собрали в кучку. Займёмся числами. Слева стоит тройка. С каким знаком? Ответ "с никаким" не принимается!) Перед тройкой, действительно, ничего не нарисовано. А это значит, что перед тройкой стоит плюс. Так уж математики договорились. Ничего не написано, значит, плюс. Следовательно, в правую часть тройка перенесётся с минусом. Получим:

-2х+3х=5-3

Остались сущие пустяки. Слева - привести подобные, справа - посчитать. Сразу получается ответ:

В этом примере хватило одного тождественного преобразования. Второе не понадобилось. Ну и ладно.)

Пример для старшеньких.)

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

gastroguru © 2017