Выбор читателей
Популярные статьи
Изучать физику значит изучать Вселенную. Точнее, как работает Вселенная. Вне всяких сомнений, физика - самая интересная ветвь науки, поскольку Вселенная куда сложнее, чем кажется, и она вмещает в себя все сущее. Иногда мир ведет себя очень странно, и возможно, вы должны быть настоящим энтузиастом, чтобы разделить с нами радость по поводу этого списка. Перед вами десять самых удивительных открытий в новейшей физике, которые заставили многих и многих ученых ломать головы не годами - десятилетиями.
Выходит, если двигаться со скоростью света, время вообще застынет на месте? Это так. Но прежде чем вы попытаетесь стать бессмертным, учтите, что двигаться со скоростью света невозможно, если вам не повезло родиться светом. С технической точки зрения движение со скоростью света потребует бесконечного количества энергии.
Квантовая механика, по сути, это изучение физики на микроскопических масштабах, таких как поведение субатомных частиц. Эти типы частиц невероятно малы, но крайне важны, поскольку именно они образуют строительные блоки всего во Вселенной. Можете представить их как крошечные вращающиеся электрически заряженные шарики. Без лишних сложностей.
Итак, у нас есть два электрона (субатомных частиц с отрицательным зарядом). - это особый процесс, который связывает эти частицы таким образом, что они становятся идентичными (обладают одинаковым спином и зарядом). Когда это происходит, с этого момента электроны становятся идентичными. Это означает, что если вы измените один из них - скажем, измените спин - второй отреагирует незамедлительно. Вне зависимости от того, где он находится. Даже если вы его не будете трогать. Влияние этого процесса потрясающее - вы понимаете, что в теории эту информацию (в данном случае, направление спина) можно телепортировать куда угодно во вселенной.
Как бы это странно ни звучало, это было доказано неоднократно. Хотя у света нет никакой массы, его путь зависит от вещей, у которых эта масса есть - вроде солнца. Поэтому если свет от далекой звезды пройдет достаточно близко к другой звезде, он обогнет ее. Как это касается нас? Да просто: возможно, те звезды, которые мы видим, находятся совсем в других местах. Помните, когда в следующий раз будете смотреть на звезды: все это может быть просто игра света.
На самом деле, объем общей массы во Вселенной значительно больше, чем общая масса, которую мы можем посчитать. Физикам пришлось искать объяснение этому, и в результате появилась теория, включающая темную материю - таинственное вещество, которое не испускает света и берет на себя примерно 95% массы во Вселенной. Хотя существование темной материи формально не доказано (потому что мы не можем ее наблюдать), в пользу темной материи говорит масса свидетельств, и она должна существовать в той или иной форме.
Но этого не произошло. На самом деле, расширение нашей Вселенной происходит все быстрее и быстрее с течением времени. И это странно. Это означает, что космос постоянно растет. Единственный возможный способ объяснить это - темная материя, а точнее темная энергия, которая и вызывает это постоянное ускорение. А что такое темная энергия? Вам .
Объяснение этого явления весьма захватывает и связано с тем, что масса объекта возрастает по мере приближения к скорости света (даже если время замедлится). Доказательство довольно сложное, поэтому можете просто поверить на слово. Посмотрите на атомные бомбы, которые преобразуют довольно небольшие объемы материи в мощные выбросы энергии.
Серьезно. Звучит смешно, но существуют конкретные доказательства того, что свет - это волна, и свет - это частица. Свет - это и то, и другое. Одновременно. Не какой-то посредник между двумя состояниями, а именно и то и другое. Мы вернулись в область квантовой механики, а в квантовой механике Вселенная любит именно так, а не иначе.
Вы думаете, что пространство само по себе пустое. Это предположение довольно разумное - на то оно и пространство, космос. Но Вселенная не терпит пустоты, поэтому в космосе, в пространстве, в пустоте постоянно рождаются и гибнут частицы. Они называются виртуальными, но на самом деле они реальны, и это доказано. Они существуют доли секунды, но это достаточно долго, чтобы сломать некоторые фундаментальные законы физики. Ученые называют это явление «квантовой пеной», поскольку оно ужасно напоминает газовые пузырьки в безалкогольном газированном напитке.
Эксперимент с двумя щелями - это просто невероятно простой и загадочный эксперимент. Вот в чем он заключается. Ученые размещают экран с двумя щелями напротив стены и выстреливают пучком света через щель, чтобы мы могли видеть, где он будет падать на стену. Поскольку свет - это волна, он создаст определенную дифракционную картину, и вы увидите полоски света, рассыпанные по всей стене. Хотя щели было две.
Но частицы должны реагировать иначе - пролетая через две щели, они должны оставлять две полоски на стене строго напротив щелей. И если свет - это частица, почему же он не демонстрирует такое поведение? Ответ заключается в том, что свет будет демонстрировать такое поведение - но только если мы захотим. Будучи волной, свет пролетает через обе щели одновременно, но будучи частицей, он будет пролетать только через одну. Все, что нам нужно, чтобы превратить свет в частицу - измерять каждую частицу света (фотон), пролетающую сквозь щель. Представьте себе камеру, которая фотографирует каждый фотон, пролетающий через щель. Этот же фотон не может пролетать через другую щель, не будучи волной. Интерференционная картина на стене будет простой: две полоски света. Мы физически меняем результаты события, просто измеряя их, наблюдая за ними.
Это называется «эффект наблюдателя». И хотя это хороший способ закончить эту статью, она даже поверхностно не копнула в совершенно невероятные вещи, которые находят физики. Есть куча вариаций эксперимента с двойной щелью, еще более безумные и интересные. Можете поискать их, только если не боитесь, что квантовая механика засосет вас с головой.
Завершился очень неоднозначный 2016 год, и самое время подвести его научные итоги в области физики и химии. Ежегодно в рецензируемых журналах по всему миру публикуется несколько миллионов статей по этим отраслям знания. И лишь несколько сотен из них оказываются действительно выдающимися работами. Научные редакторы Лайфа отобрали 10 самых интересных и важных открытий и событий минувшего года, о которых необходимо знать каждому.
Самым приятным событием для российских любителей науки стало - нихония, московия, теннессина и оганесона. К открытию трёх последних причастны физики-ядерщики из Дубны - Лаборатория ядерных реакций ОИЯИ под руководством Юрия Оганесяна. Пока об элементах известно очень мало, а их время жизни измеряется секундами или даже миллисекундами. Помимо российских физиков в открытии участвовала Ливерморская национальная лаборатория (Калифорния) и Национальная лаборатория Оак-Ридж в Теннесси. Приоритет в открытии нихония был признан за японскими физиками из института RIKEN. Официальное включение элементов состоялось совсем недавно - 30 ноября 2016 года.
В июне в журнале Physical Review Letters вышла публикация одного из, вероятно, самых популярных физиков современности - Стивена Хокинга. Учёный о том, что наконец решил 40-летнюю загадку парадокса потери информации в чёрной дыре. Кратко его можно описать так: из-за того что чёрные дыры испаряются (испуская излучение Хокинга), мы даже теоретически не можем отследить судьбу каждой отдельной частицы, упавшей в неё. Это нарушает фундаментальные принципы квантовой физики. Хокинг вместе с соавторами предположили, что информация обо всех частицах хранится на горизонте событий чёрной дыры, и даже описал, в каком именно виде. Работа теоретика получила романтичное название "мягкие волосы у чёрных дыр".
В этом же году Хокинг получил ещё один повод для торжества: экспериментатор-одиночка из Израильского технологического института, Джефф Штейнхауэр обнаружил следы неуловимого излучения Хокинга в аналоговой чёрной дыре. Проблемы с наблюдением этого излучения в обычных чёрных дырах связаны с его низкой интенсивностью и температурой. Для дыры массой с Солнце следы излучения Хокинга будут полностью теряться на фоне реликтового излучения, заполняющего Вселенную.
Штейнхауэр построил модель чёрной дыры с помощью бозе-конденсата холодных атомов. Он содержал в себе две области, одна из которых двигалась с небольшой скоростью - символизируя падение материи на чёрную дыру, - а другая со сверхзвуковой скоростью. Граница между областями играла роль горизонта событий чёрной дыры - никакие колебания атомов (фононы) не могли пересекать её в направлении от быстрых атомов к медленным. Оказалось, что из-за квантовых флуктуаций на границе всё равно рождались волны колебаний, которые распространялись в сторону дозвукового конденсата. Эти волны являются полным аналогом излучения, предсказанного Хокингом.
2016 год выдался очень удачным для физиков Большого адронного коллайдера: учёные перевыполнили план по количеству протон-протонных столкновений и получили огромный массив данных, на полную обработку которого уйдёт ещё несколько лет. Самые большие ожидания теоретиков были связаны с наметившимся ещё в 2015 году пиком двухфотонных распадов при 750 гигаэлектронвольтах. Он указывал на неизвестную сверхмассивную частицу, которую не предсказывала ни одна теория. Теоретики успели подготовить около 500 статей, посвящённых новой физике и новым законам нашего мира. Но в августе экспериментаторы рассказали, что никакого открытия не будет: пик, привлёкший внимание нескольких тысяч физиков со всего мира, оказался простой статистической флуктуацией.
Кстати, в этом году об открытии новой необычной частицы заявили эксперты из другого эксперимента в мире элементарных частиц - коллаборации D0 Тэватрона. До открытия БАКа этот ускоритель был крупнейшим в мире. Физики обнаружили в архивных данных протон-антипротонных столкновений , носящей в себе сразу четыре разных квантовых аромата. Эта частица состоит из четырёх кварков - мельчайших кирпичиков материи. В отличие от других открытых тетракварков в ней были одновременно "верхний", "нижний", "странный" и "прелестный" кварки. Правда, подтвердить находку на БАКе не удалось. Ряд физиков высказался по этому поводу довольно скептично, указав, что специалисты Тэватрона могли принять за частицу случайную флуктуацию.
Важным результатом для ЦЕРН стало первое измерение оптического спектра антиводорода. Почти двадцать лет физики шли к тому, чтобы научиться получать антиматерию в больших количествах и работать с ней. Главная сложность здесь в том, что антиматерия способна очень быстро аннигилировать при контакте с обычным веществом, поэтому крайне важно не только создать античастицы, но и научиться их хранить.
Антиводород - это простейший антиатом, который способны получать физики. Он состоит из позитрона (антиэлектрона) и антипротона - электрические заряды этих частиц противоположны зарядам электрона и протона. У общепринятых физических теорий есть важное свойство: их законы симметричны при одновременном зеркальном отражении, обращении времени и замене зарядов частиц (CPT-инвариантность). Следствие этого свойства - почти полное совпадение свойств у материи и антиматерии. Однако некоторые теории "новой физики" нарушают это свойство. Эксперимент по измерению спектра антиводорода позволил с большой точностью сравнить его характеристики с обычным водородом. Пока, на уровне точности в миллиардные доли, спектры совпадают.
Есть среди важных результатов этого года и практически применимые, хотя бы и в отдалённом будущем. Физики из Национальной лаборатории в Беркли самый маленький в мире транзистор - размер его затвора составляет всего один нанометр. Обычные кремниевые транзисторы при таких размерах не способны работать, квантовые эффекты (туннелирование) превращают их в обычные проводники, не способные перекрывать электрический ток. Ключом к победе над квантовыми эффектами оказался компонент автомобильной смазки - дисульфид молибдена.
Другой потенциально применимый результат - в 2016 году нового примера квантовой жидкости, хлорида рутения. Это вещество обладает необычными магнитными свойствами. Некоторые атомы ведут себя в кристаллах как маленькие магнитики, пытающиеся выстроиться в какую-нибудь упорядоченную структуру. Например, оказаться полностью сонаправленными. При температурах вблизи абсолютного нуля почти все магнитные вещества становятся упорядоченными, кроме одного - спиновых жидкостей.
У такого необычного поведения есть одно полезное свойство. Физики построили модель поведения спиновых жидкостей и выяснили, что в них могут существовать специальные состояния "расщеплённых" электронов. На самом деле электрон, конечно, не расщепляется - он по-прежнему остаётся единой частицей. Такие состояния-квазичастицы могут стать основой для квантовых компьютеров, абсолютно защищённых от внешних воздействий, разрушающих их квантовое состояние.
Физики из Университета Делфта (Голландия) отчитались в этом году о создании элементов памяти, в которых информация записывается в отдельных атомах. На квадратном сантиметре такого элемента можно записать около 10 терабайт информации. Единственный минус - небольшая скорость работы. Для перезаписи информации используется манипулирование одиночными атомами - для записи нового бита специальный микроскоп поднимает и поодиночке переносит частицу на новое место. Пока объём памяти тестового образца составляет всего один килобайт, а полная перезапись требует несколько минут. Зато технология вплотную приблизилась к теоретическому пределу плотности записи информации.
Химики из Мадридского автономного университета в 2016 году создали новый двумерный материал, расширяющий количество собратьев графена. На тот раз в основу плоского одноатомного листа легла сурьма - элемент, широко применяющийся в полупроводниковой промышленности. В отличие от остальных двумерных материалов графен из сурьмы - антимонен - чрезвычайно стабилен. Он даже способен выдержать погружение в воду. Теперь двумерные формы есть у углерода, кремния, германия, олова, бора, фосфора и сурьмы. Учитывая, какими необычными свойствами обладает графен, остаётся только ждать более подробных исследований его собратьев.
Особняком выделим в списке Нобелевские премии по химии и физике, которые были вручены 10 декабря 2016 года. Соответствующие им открытия были сделаны ещё во второй половине XX века, но сама премия - важное ежегодное событие научного мира. Премию по химии (золотую медаль и 58 миллионов рублей) получили Жан-Пьер Соваж, сэр Фрейзер Стоддарт и Бернард Феринга "за проектирование и синтез молекулярных машин". Это невидимые человеческому глазу и даже самому мощному оптическому микроскопу механизмы, способные выполнять простейшие действия: вращаться или двигаться на манер поршня. Несколько миллиардов таких роторов вполне способны заставить вращаться стеклянную бусину в воде. В будущем такие конструкции вполне можно использовать в молекулярной хирургии. Подробнее об открытии :
"Физическую" премию получили британские учёные Дэвид Таулес, Дункан Халдан и Джон Майкл Костерлиц за, как указал нобелевский комитет, "теоретические открытия топологических фазовых переходов и топологических фаз материи". Эти переходы помогли объяснить очень странные, с точки зрения экспериментаторов, наблюдения: например, если взять тонкий слой вещества и измерять его электрическое сопротивление в магнитном поле, то окажется, что в ответ на равномерное изменение поля проводимость меняется ступенчато. О том, как это связано с бубликами и кексами, можно прочитать в нашем .
Самые выдающиеся открытия человечества в области физики
1. Закон падения тел (1604)
Галилео Галилей опроверг почти 2000 летнее аристотелевское убеждение, что тяжелые тела падают быстрее, чем легкие, доказав, что все тела падают с одинаковой скоростью.
2. Закон всемирного тяготения (1666)
Исаак Ньютон приходит к выводу, что все объекты во Вселенной, от яблок до планет оказывают гравитационное притяжение (воздействие) друг на друга.
3. Законы движения (1687)
Исаак Ньютон меняет наше представление о Вселенной, сформулировав три закона для описания движения объектов.
1. Движущийся объект остается в движении, если внешняя сила воздействует на него.
2. Соотношение между массой объекта (m), ускорение (а) и приложенной силой (F) F = mа.
3. Для каждого действия есть равная и противоположная реакция (противодействие).
4. Второй закон термодинамики (1824 - 1850)
Ученые, работающие над повышением эффективности паровых машин, развили теорию понимания преобразование тепла в работу. Они доказали, что поток тепла от более высоких к более низким температурам, заставляет паровоз (или иной механизм) двигаться, уподобляя процессу потока воды, который вращает мельничное колесо.
Их работа приводит к трем принципам: тепловые потоки необратимы от горячего к холодному телу, тепло не может быть полностью преобразовано в другие формы энергии, а также системы становятся все более неорганизованными с течением времени.
5. Электромагнетизм (1807 - 1873)
Ханс Кристиан Эстед
Новаторские эксперименты выявили связь между электричеством и магнетизмом и систематизированы в системе уравнений, которые выражают их основные законы.
В 1820 году датский физик Ханс Кристиан Эрстед говорит студентам о возможности того, что электричество и магнетизм связаны между собой. Во время лекции, эксперимент показывает правдивость его теории перед всем классом.
6. Специальная теория относительности (1905)
Альберт Эйнштейн отвергает основные предположения о времени и пространстве, описывая, что часы идут медленнее и расстояние искажается, если скорость приближаются к скорости света.
7. E = MC 2 (1905)
Или энергия равна массе, умноженной на квадрат скорости света. Знаменитая формула Альберта Эйнштейна доказывает, что масса и энергия являются различными проявлениями одного и того же, и, что очень небольшое количество массы может быть преобразовано в очень большое количество энергии. Самый глубокий смысл этого открытия является то, что ни один объект с любой массой, отличной от 0 никогда не может двигаться быстрее скорости света.
8. Закон Квантового Скачка (1900 - 1935)
Закон, для описания поведения субатомных частиц, описали Макс Планк, Альберт Эйнштейн, Вернер Гейзенберг и Эрвин Шредингер. Квантовый скачок определяется как изменение электрона в атоме из одного энергетического состояния в другое. Это изменение происходит сразу, а не постепенно.
9. Природа света (1704 - 1905)
Результаты экспериментов Исаака Ньютона, Томаса Янга и Альберта Эйнштейна приводит к пониманию того, что такое свет, как он себя ведет, и как он передается. Ньютон использует призму для разделения белого света на составляющие цвета, а другая призма смешивала цветной свет в белый, доказывая, что цветной свет, смешиваясь, образует белый свет. Было установлено, что свет представляет собой волну, и что длина волны определяет цвет. Наконец, Эйнштейн признает, что свет всегда движется с постоянной скоростью, независимо от скорости измерителя.
10. Открытие нейтрона (1935)
Джеймс Чедвик обнаружил нейтроны, которые вместе с протонами и электронами составляют атом вещества. Это открытие существенно изменило модель атома и ускорило ряд других открытий в атомной физике.
11. Открытие сверхпроводников (1911 - 1986)
Неожиданное открытие, что некоторые материалы не имеют никакого сопротивления электрическому току при низких температурах, обещали революцию в промышленности и технике. Сверхпроводимость возникает в самых разнообразных материалах при низких температурах, включая простые элементы, такие как олово и алюминий, различные металлические сплавы и некоторые керамические соединения.
12. Открытие кварков (1962)
Мюррей Гелл-Манн предположил существование элементарных частиц, которые в совокупности образуют составные объекты, такие как протоны и нейтроны. Кварк имеет свой заряд. Протоны и нейтроны содержат три кварка.
13. Открытие ядерных сил (1666 - 1957)
Открытия основной силы, действующие на субатомном уровне, привело к пониманию, что все взаимодействия во Вселенной являются результатом четырех фундаментальных сил природы - сильных и слабых ядерных сил, электромагнитных сил и гравитации.
Все эти открытия сделаны учеными, которые посвятили свою жизнь науке. В то время диплом MBA на заказ передать на написание кому-то было невозможно, только систематический труд, упорство, наслаждение своим стремлением - позволило им стать знаменитыми.
Заканчивается очередной год, и пришло время в очередной раз присесть, сложить руки, глубоко вздохнуть и посмотреть на некоторые из заголовков научных статей, на которые мы, возможно, ранее не обращали внимания. Ученые постоянно создают какие-то новые разработки в различных областях, таких как нанотехнологии, генная терапия или квантовая физика, и это всегда открывает новые горизонты.
Заголовки научных статей все больше напоминают названия рассказов из научно-фантастических журналов. Учитывая то, что нам принес 2017 год, остается только с нетерпением дожидаться, что принесет новый, 2018-й.
Спонсор поста:
http://www.esmedia.ru/plazma.php : Аренда плазменных панелей. Недорого.
Источник: muz4in.net
Ученые создали темпоральные кристаллы, для которых не действуют законы симметрии времени
Согласно первому закону термодинамики, создание вечного двигателя, который будет работать без дополнительного источника энергии, невозможно. Однако в начале этого года физикам удалось создать конструкции, называемые темпоральными кристаллами, которые ставят этот тезис под сомнение.
Темпоральные кристаллы выступают в качестве первых реальных примеров нового состояния материи, называемого «неравновесным», в котором атомы имеют переменную температуру и никогда не находятся в тепловом равновесии друг с другом. Темпоральные кристаллы имеют атомную структуру, которая повторяется не только в пространстве, но и во времени, что позволяет им поддерживать постоянные колебания без получения энергии. Это происходит даже в стационарном состоянии, которое является самым низшим энергетическим состоянием, когда движение теоретически невозможно, поскольку оно требует затрат энергии.
Так что же, кристаллы времени нарушают законы физики? Строго говоря, нет. Закон сохранения энергии работает только в системах с симметрией во времени, которая подразумевает, что законы физики одинаковы везде и всегда. Однако темпоральные кристаллы нарушают законы симметрии времени и пространства. И не только они. Магниты тоже иногда считаются природными асимметричными объектами, потому что у них есть северный и южный полюса.
Еще одна причина, по которой темпоральные кристаллы не нарушают законов термодинамики, заключается в том, что они не полностью изолированы. Иногда их нужно «подталкивать» - то есть давать внешний импульс, после получения которого они уже начнут менять свои состояния снова и снова. Возможно, что в будущем эти кристаллы найдут широкое применение в области передачи и хранения информации в квантовых системах. Они могут сыграть решающую роль в квантовых вычислениях.
«Живые» крылья стрекозы
В энциклопедии Merriam-Webster говорится, что крыло - это подвижный придаток из перьев или мембраны, используемый птицами, насекомыми и летучими мышами для полета. Оно не должно быть живым, но энтомологи из Кильского университета в Германии сделали несколько потрясающих открытий, которые говорят об обратном - по крайней мере относительно некоторых стрекоз.
Насекомые дышат с помощью трахейной системы. Воздух проникает в организм через отверстия, называемые дыхальцами. Затем он проходит через сложную сеть трахей, которые доставляют воздух ко всем клеткам тела. Однако сами крылья состоят почти полностью из мертвой ткани, которая высыхает и становится полупрозрачной либо покрывается цветными узорами. Области мертвой ткани пронизывают прожилки, и это единственные компоненты крыла, являющиеся частью дыхательной системы.
Однако когда энтомолог Рейнер Гильермо Феррейра посмотрел на крыло самца стрекозы Zenithoptera через электронный микроскоп, он увидел крошечные ветвистые трахейные трубки. Это был первый случай, когда нечто подобное было замечено в крыле насекомого. Для определения того, является ли эта физиологическая особенность свойственной только этому виду или, возможно, встречается и у других стрекоз или даже у других насекомых, потребуется много исследований. Возможно даже, что это единичная мутация. Наличие обильных запасов кислорода может объяснить яркие сложные синие узоры, свойственные крыльям стрекозы Zenithoptera, которые не содержат синего пигмента.
Древний клещ с кровью динозавра внутри
Конечно, это заставило людей сразу подумать о сценарии из «Парка юрского периода» и о возможности использования крови, чтобы воссоздать динозавров. К сожалению, в ближайшее время этого не случится, потому что извлечь образцы ДНК из найденных кусочков янтаря невозможно. Дискуссии о том, как долго может продержаться молекула ДНК, все еще не окончены, но даже по самым оптимистичным оценкам и в самых оптимальных условиях срок их жизни не более нескольких миллионов лет.
Но, хотя клещ, названный Deinocrotondraculi («Ужасный Дракула»), и не помог восстановить динозавров, он все равно остается крайне необычной находкой. Теперь мы знаем не только то, что у пернатых динозавров водились древние клещи, но и то, что они заражали даже гнезда динозавров.
Модификация генов взрослого человека
На сегодняшний день вершиной генной терапии являются «короткие палиндромные повторы, регулярно расположенные группами», или CRISPR (от английского clustered regularly interspaced short palindromic repeats). Семейство последовательностей ДНК, которые в настоящее время составляют основу технологии CRISPR-Cas9, теоретически может навсегда изменить ДНК человека.
В 2017 году генная инженерия сделала решительный рывок вперед - после того как команда из Протеомического исследовательского центра в Пекине объявила, что успешно использовала CRISPR-Cas9 для устранения болезнетворных мутаций жизнеспособных человеческих эмбрионов. Другая команда, из лондонского Института Фрэнсиса Крика, прошла противоположный путь и впервые использовала эту технологию для преднамеренного создания мутаций в человеческих эмбрионах. В частности, они «отключили» ген, способствующий развитию эмбрионов в бластоцисты.
Исследования показали, что технология CRISPR-Cas9 работает - и довольно успешно. Однако это вызвало активные этические дебаты о том, насколько далеко можно заходить в использовании этой технологии. Теоретически это может привести к «дизайнерским детям», которые могут обладать интеллектуальными, спортивными и физическими характеристиками в соответствии с характеристиками, заданными родителями.
Отбросив этику в сторону, в ноябре этого года исследования зашли еще дальше, когда CRISPR-Cas9 впервые испытали на взрослом человеке. 44-летний Брэд Мадду из Калифорнии страдает синдромом Хантера, неизлечимой болезнью, которая в конечном итоге может привести его к инвалидному креслу. Ему вводили миллиарды копий корректирующего гена. Пройдет несколько месяцев, прежде чем можно будет определить, оказалась ли процедура успешной.
Что было раньше - губка или гребневики?
Новый научный отчет, который был опубликован в 2017 году, должен раз и навсегда положить конец давней дискуссии о происхождении животных. Согласно исследованию, губки являются «сестрами» всех животных в мире. Это связано с тем, что губки были первой группой, которая отделилась в процессе эволюции от примитивного общего предка всех животных. Это произошло примерно 750 миллионов лет назад.
Ранее велись горячие дебаты, которые сводились к двум основным кандидатам: вышеупомянутым губкам и морским беспозвоночным под названием гребневики. В то время как губки - простейшие существа, которые сидят на дне океана и питаются, пропуская и отфильтровывая воду через свой организм, гребневики более сложные. Они напоминают медузу, способны двигаться в воде, могут создавать световые узоры и имеют простейшую нервную систему. Вопрос о том, кто из них был первым, - это вопрос о том, как выглядел наш общий предок. Это считается важнейшим моментом в отслеживании истории нашей эволюции.
Хотя результаты исследования смело провозглашают, что вопрос урегулирован, всего за несколько месяцев до этого было опубликовано другое исследование, в котором говорилось, что нашими эволюционными «сестрами» являются гребневики. Следовательно, еще слишком рано говорить о том, что последние результаты можно считать достаточно надежными, чтобы подавить любые сомнения.
Еноты прошли древний тест на интеллект
В шестом веке до нашей эры древнегреческий писатель Эзоп написал или же насобирал множество басен, которые в наше время известны как «Басни Эзопа». Среди них была басня под названием «Ворона и кувшин», в которой описывается, как хотевшая пить ворона бросала в кувшин камешки, чтобы поднять уровень воды и наконец напиться.
Несколько тысяч лет спустя ученые поняли, что эта басня описывает хороший способ тестирования интеллекта животных. Эксперименты показали, что подопытные животные понимали причину и следствие. Вороны, как и их сородичи, грачи и сойки, подтвердили истинность басни. Обезьяны также прошли этот тест, кроме того, в этом году к списку добавились и еноты.
Во время теста по басне Эзопа восемь енотов получили емкости с водой, на поверхности которой плавал зефир. Уровень воды был слишком низким, чтобы его достать. Двое из испытуемых успешно набросали в емкость камней, чтобы поднять уровень воды и получить желаемое.
Другие подопытные нашли свои собственные креативные решения, которых исследователи никак не ожидали. Один из енотов, вместо того, чтобы бросать в емкость камни, взобрался на емкость и начал раскачиваться на ней из стороны в сторону, пока не опрокинул. В другом тесте, с использованием вместо камней плавающих и тонущих шариков, эксперты надеялись, что еноты будут использовать тонущие шарики и отбрасывать плавающие. Вместо этого некоторые животные стали многократно окунать в воду плавающий шарик, пока поднявшаяся волна не прибила кусочки зефира к борту, что облегчило их извлечение.
Физики создали первый топологический лазер
Физики из Калифорнийского университета в Сан-Диего утверждают, что создали новый тип лазера - «топологический», луч которого может принимать любую сложную форму без рассеивания света. Устройство работает на основе концепции топологических изоляторов (материалов, которые внутри своего объема являются диэлектриками, но проводят ток по поверхности), которая получила Нобелевскую премию по физике в 2016 году.
Обычно в лазерах для усиления света используются кольцевые резонаторы. Они более эффективны, чем резонаторы с острыми углами. Однако на этот раз исследовательская группа создала топологическую полость с использованием фотонного кристалла в качестве зеркала. В частности, были использованы два фотонных кристалла с различными топологиями, один из которых являлся звездообразной ячейкой в квадратной решетке, а другой - треугольной решеткой с цилиндрическими воздушными отверстиями. Член команды Бубакар Канте сравнил их с бубликом и кренделем: хотя они оба - хлеб с отверстиями, различное количество отверстий делает их различными.
Как только кристаллы попадают в нужное место, луч принимает желаемую форму. Управляется эта система с помощью магнитного поля. Оно позволяет менять направление, в котором излучается свет, тем самым создавая световой поток. Непосредственное практическое применение этого способно увеличить скорость оптической связи. Однако в перспективе это рассматривается как шаг вперед в создании оптических компьютеров.
Ученые открыли экситониум
Физики всего мира с большим энтузиазмом отнеслись к открытию новой формы материи, названной экситониум. Эта форма представляет собой конденсат из квазичастиц, экситонов, которые являются связанным состоянием свободного электрона и электронной дырки, которая образовывается в результате того, что молекула потеряла электрон. Более того, физик-теоретик из Гарварда Берт Гальперин предсказал существование экситониума еще в 1960-х годах, и с тех пор ученые пытались доказать его правоту (или ошибку).
Подобно многим крупным научным открытиям, и в этом открытии была изрядная доля случайности. Команда исследователей из Университета штата Иллинойс, которая обнаружила экситониум, на самом деле осваивала новую технологию, называемую спектроскопией потерь энергии в электронном потоке (M-EELS), - созданную специально для идентификации экситонов. Однако открытие состоялось, когда исследователи проводили всего лишь калибровочные тесты. Один член команды вошел в комнату, пока все остальные смотрели на экраны. Они сказали, что зафиксировали «легкий плазмон», предшественник экситонной конденсации.
Руководитель исследования профессор Питер Аббамонт сравнил это открытие с бозоном Хиггса - оно не будет иметь непосредственного использования в реальной жизни, но показывает, что наше нынешнее понимание квантовой механики находится на правильном пути.
Ученые создали нанороботов, которые убивают рак
Исследователи из Университета Дарема утверждают, что создали нанороботов, которые способны выявить раковые клетки и убить их всего за 60 секунд. В ходе увенчавшегося успехом испытания, проведенного в университете, крошечным роботам потребовалось от одной до трех минут, чтобы проникнуть через наружную мембрану в раковую клетку простаты и немедленно уничтожить ее.
Нанороботы в 50 000 раз меньше диаметра человеческого волоса. Они активируются светом и вращаются со скоростью от двух до трех миллионов оборотов в секунду, чтобы получить возможность проникнуть через оболочку клетки. Когда они достигают своей цели, то могут либо уничтожить ее, либо внедрить в нее полезный терапевтический агент.
До сих пор нанороботы испытывались только на отдельных клетках, но обнадеживающие результаты побудили ученых перейти к опытам на микроорганизмах и мелких рыбешках. Дальнейшая цель - перейти к грызунам, а затем и к людям.
Межзвездный астероид может быть инопланетным космическим аппаратом
Прошла всего пара месяцев с тех пор, как астрономы радостно объявили об открытии первого межзвездного объекта, пролетающего через Солнечную систему, астероида под названием Оумуамуа. С тех пор они наблюдали много странных вещей, происходивших с этим небесным телом. Иногда оно вело себя так необычно, что ученые считают - объект может оказаться космическим кораблем инопланетян.
Прежде всего настораживает его форма. Оумуамуа имеет форму сигары с отношением длины к диаметру как десять к одному, чего ни разу не видели ни в одном из наблюдаемых астероидов. Сначала ученые подумали, что это комета, но затем поняли, что это не так, потому что объект не оставлял за собой хвоста по мере приближения к Солнцу. Более того, некоторые эксперты утверждают, что скорость вращения объекта должна была развалить любой нормальный астероид. Складывается впечатление, что он был специально создан для межзвездных путешествий.
Но если он создан искусственно, то что это может быть? Одни говорят, что это инопланетный зонд, другие считают, что это может быть космический корабль, двигатели которого пришли в неисправность, и теперь он плывет через космос. В любом случае участники таких программ, как SETI и BreakthroughListen, считают, что Оумуамуа требует дальнейшего исследования, поэтому нацеливают на него свои телескопы и прослушивают любые радиосигналы.
Пока гипотеза об инопланетянах никак не подтвердилась, первоначальные наблюдения SETI ни к чему не привели. Многие исследователи по-прежнему пессимистично оценивают шансы, что объект может быть создан инопланетянами, но в любом случае исследования будут продолжены.
В мире науки за последние 10 лет произошло очень многое. От поиска воды на Марсе до манипуляций с памятью и обнаружения «темной материи» - все в этом списке показывает, что сегодня люди действительно живут в удивительное время.
Стволовые клетки - уникальные. Вроде бы они ничем не отличаются от любых других клеток в организме, помимо того, что они обладают врожденной способностью превращаться в любой другой вид клеток. Это означает, что они могут превратиться, например, в красные клетки крови, если их не хватает организму, или в белые клетки крови, в мышечные клетки, в нервные клетки...
О стволовых клетках известно с 1981 года, но до 2006 было неизвестно, что любая клетка в теле может быть перепрограммирована и превращена в стволовую. И это довольно просто сделать, что доказал ученый по имени Синъя Яманака, который впервые в мире сумел добавить четыре определенных гена в клетки кожи. В течение двух-трех недель эти клетки кожи превратились в стволовые. Это стало огромным открытием для регенеративной медицины.
В 2009 году группа астрономов приступила к измерению массы недавно обнаруженной черной дыры, получившей название S5 0014 + 81. К их изумлению, она оказалась в 10 000 раз больше, чем сверхмассивная черная дыра в центре Млечного Пути, что делает ее самой крупной черной дырой, известной человеку. Масса этой ультрамассивной черной дыры в 40 миллиардов больше Солнца. Что еще более невероятно, она была сформирована сравнительно недавно по рамкам Вселенной, через 1,6 миллиарда лет после Большого взрыва.
В 2014 году ученые Стив Рамирес и Сюй Лю смогли заменить негативные воспоминания в мозге мышей на положительные, и наоборот. Они внедрили в организм мышей светочувствительные белки и добились активации этих белков с помощью лазера, которым светили мышам в глаза. В итоге, негативные события, пережитые мышами, начали восприниматься грызунами, как положительные, а позитивные события, как ужасные. Это открыло совершенно новую форму потенциального лечения тех, кто страдает от посттравматического стрессового расстройства или от сильного чувства горя от потери любимого человека.
Хотя это считалось невозможным всего несколько лет назад, компания IBM выпустила в 2014 году чип компьютера, который работает так же, как человеческий мозг. Он содержит 5,4 миллиарда транзисторов и потребляет в 10 000 раз меньше энергии, чем обычные компьютерные чипы, а также работает путем имитации синапсов в человеческом мозге. А если быть точнее, 256 мозгов. Он может быть запрограммирован, чтобы делать то, что хочет пользователь, что делает этот чип невероятно полезным для использования в суперкомпьютерах. Synapse не ограничен с точки зрения производительности, благодаря своей радикально отличающейся конструкции по сравнению с обычными компьютерами. Эта революционная технология может серьезно изменить компьютерную индустрию к лучшему в ближайшие годы.
Темная материя в значительной степени - теоретическое явление, которое «было придумано» для объяснения многих странных астрономических сценариев. В качестве примера можно привести подобное: есть галактика с тысячей планет внутри нее. Если просуммировать массы всех этих планет и сравнить результат с тем, как на самом деле движется эта галактика, то обнаружится сильное расхождение. Галактика движется таким образом, что она должна быть в несколько раз массивнее. Это может означать то, что в ней есть некая материя, которую люди просто не видят. Поэтому ее и назвали «темной материей».
В 2009 году несколько американских лабораторий заявили, что сумели «засечь» 2 частицы этой темной материи с помощью датчиков внутри шахты по добыче железа в 800 метрах под землей. До сих пор ведутся проверки этих данных, чтобы убедиться в их достоверности. Если это окажется правдой, то подобное вполне может быть одним из самых значительных открытий в физике за последний век.
Все-таки она может существовать. В 2015 году NASA опубликовала изображения, на которых видны длинные темные полосы на поверхности красной планеты, которые появляются и исчезают в течение разных сезонов года. Это весомое доказательство того, что сегодня на Марсе существует жидкая вода. Хотя ученые уже в течение некоторого времени знали, что она существовала на Марсе в прошлом, о том, что она есть сегодня, стало известно впервые. Поэтому вновь встал вопрос о существовании жизни на Марсе. Также открытие воды в жидком состоянии может стать существенной помощью астронавтам, которые в 2024 году собираются отправиться на Марс.
TRAPPIST-1 - это название, которое было присвоено звездной системе, находящейся примерно в 39 световых годах от нашей Солнечной системы. Особенной ее делает то, что вокруг звезды в 12 раз менее массивной, чем Солнце, вращаются по крайней мере 7 планет, 3 из которых находятся в обитаемой зоне, т. е. на них потенциально может быть жизнь.
Статьи по теме: | |
Отделы водорослей К какому царству относятся сине зеленые водоросли
Среди существующих ныне организмов встречаются такие, о принадлежности... Что такое система вообще
В силу того, что системный анализ направлен на решение любых проблем... Курс выживания в дикой природе Подмосковья: как это было
В мае 2012 года в средствах массовой информации появилась информация о... |