Этапы метода флуоресцентной гибридизации in situ fish. Флюоресцентная гибридизация in situ. Фиш тест при раке молочной железы – механизм развития онкологии

Этапы метода флуоресцентной гибридизации in situ fish. Флюоресцентная гибридизация in situ. Фиш тест при раке молочной железы – механизм развития онкологии

Традиционная цитогенетика при изучении кариотипа всегда была ограничена бэндовым уровнем разрешения. Даже при использовании высокоразрешающих методов дифференциального окрашивания хромосом мы всего лишь выявляли большее количество бэндов на хромосоме, но не были уверены, что добираемся до молекулярного уровня разрешения. Последние достижения ДНК-технологий и цитогенетики сделали возможным использование методов FISH для анализа изменений хромосомной ДНК на молекулярном уровне. Молекулярная цитогенетика обеспечила революционный прорыв в цитогенетике, позволив:

Осуществлять анализ структуры ДНК хромосом в диапазоне 10-100 килобаз;
проводить диагностику неделящихся интерфазных клеток, что оказало огромное влияние на пренатальную диагностику и преимплантационную генетическую диагностику (ПГД).

Технология FISH использует ДНК-зонд, который связывается или ренатурирует специфические последовательности ДНК внутри хромосомы. Денатурированный зонд инкубируется с нативной ДНК клетки, также денатурированной до одноцепочечного состояния. Зонд замещает биотин-дезоксиуридинтрифосфат или дигоксигенин-уридинтрифосфат на тимидин. После ренатурации зондом нативной ДНК комплекс «зонд-ДНК» можно обнаружить при добавлении меченного флюорохромом авидина, связывающегося с биотином, или меченного флюорохромом антидигоксигенина. Дополнительное усиление сигнала можно получить, добавив антиавидин и изучив получившийся комплекс с помощью флюоресцентной микроскопии. Пометив несколькими различными флюорохромами разные ДНК-зонды, можно одновременно визуализировать несколько хромосом или хромосомных сегментов внутри одной клетки в виде разноцветных сигналов.

Возможность определения специфических генных сегментов , имеющихся или отсутствующих на хромосомах, позволила диагностировать синдромы генных последовательностей на уровне ДНК, как, впрочем, и транслокации в интерфазных ядрах, зачастую - в отдельных клетках.

Материалом для FISH могут служить или метафазные хромосомы, полученные из делящихся клеток, или интерфазные ядра из клеток, не находящихся в стадии деления. Срезы предварительно обрабатывают РНКазой и протеиназой для удаления РНК, которая может вступать в перекрестную гибридизацию с зондом и хроматином. Затем их нагревают в формамиде, чтобы денатурировать ДНК, и фиксируют ледяным спиртом. Затем зонд подготавливают к гибридизации путем нагревания. После этого зонд и хромосомный препарат смешивают и герметизируют покровным стеклом при 37 °С для гибридизации. Изменяя температуру инкубации или солевой состав раствора для гибридизации, можно повысить специфичность связывания и уменьшить фоновую маркировку.

Применение флюоресцентной гибридизации in situ - технологии FISH

Эффективность технологии FISH впервые была продемонстрирована при локализации генов на . С внедрением метода флюоресцентного мечения, гибридизация in situ оказалась незаменимой для диагностики хромосомных аномалий, не выявляемых традиционными методами бэндинга. FISH также сыграла ключевую роль в совершении одного из самых необычных открытий современной генетики - геномного импринтинга.


Свое развитие технология FISH получила в трех формах. Центромерные, или альфа-сателлитные, зонды характеризуются относительной хромосомной специфичностью, их использовали чаще всего в генетике интерфазных клеток. Эти зонды генерируют в некоторой степени диффузные сигналы адекватной силы в области центромеры, но не вступают в перекрестную гибридизацию с хромосомами, имеющими аналогичные центромерные последовательности. В настоящее время разработаны однокопийные зонды, дающие дискретный сигнал от специфического бэнда хромосомы и позволяющие избежать феномена перекрестной гибридизации. Эти зонды также можно использовать для определения копийности и специфичных регионов хромосомы, предположительно связанных с тем или иным синдромом. Однокопийные и центромерные зонды, разработанные для хромосом 13, 18, 21, X и Y, используют для пренатальной диагностики.

Возможно также «окрашивание» целых хромосом с помощью FISH . Благодаря технологии спектрального кариотипирования, при которой используют смесь различных флюорохромов, теперь стало возможным создание уникального флюоресцентного паттерна для каждой отдельной хромосомы с 24 отдельными цветами. Эта технология позволяет определять сложные хромосомные перестройки, не видимые при использовании традиционных цитогенетических методик.

Метод FISH в пренатальной диагностике. Для женщин старшего репродуктивного возраста беременность может оказаться поводом не столько для радости, сколько для беспокойства. С возрастом женщины связан риск развития хромосомных аномалий плода. Амниоцентез, осуществляемый на 16-й неделе беременности, с последующим анализом кариотипа занимает 10-14 дней. Использование FISH в предварительном обследовании позволяет ускорить диагностику и уменьшить время ожидания. Большинство генетиков и лабораторий придерживаются мнения, что метод FISH не следует использовать изолированно для принятия решения о дальнейшем ведении беременности. Метод FISH обязательно следует дополнять кариотипическим анализом, и его результаты как минимум должны коррелировать с патологической картиной ультразвукового исследования (УЗИ) или биохимического скрининга по крови матери.

Синдромы генных последовательностей известны также под названием синдромов микроделеции, или сегментарной анеусомии. Это делеции смежных фрагментов хромосомы, вовлекающие, как правило, многие гены. Синдромы генных последовательностей были впервые описаны в 1986 г. с использованием классических методик цитогенетики. Теперь, благодаря FISH, возможна идентификация субмикроскопических делеции на уровне ДНК, что позволило выявлять наименьший делецированный регион, связанный с развитием того или иного синдрома, получивший название критического региона. После определения критического региона для синдрома зачастую становится возможным идентифицировать специфические гены, отсутствие которых признают ассоциированным с этим синдромом. В недавно вышедшем руководстве по синдромам генных последовательностей сообщают о 18 синдромах делеции и микроделеции, ассоциированных с 14 хромосомами. Некоторые наиболее часто встречающиеся синдромы генных последовательностей и их клинические проявления приведены в табл. 5-2.

Теломеры - образования, прикрывающие с концов длинные и короткие плечи хромосом. Они состоят из повторяющихся последовательностей TTAGGG и предотвращают слияние концевых участков хромосом между собой. Теломерные зонды играют важную роль в распознавании комплексных транслокаций, которые невозможно определить традиционными цитогенетическими методами. Кроме того, одним из открытий Проекта «Геном человека» был тот факт, что регионы хромосом, прилежащие к теломерам, богаты генами. В настоящее время показано, что субмикроскопические субтеломерные делеции ответственны за возникновение многих генетически обусловленных заболеваний.

В некоторых случаях цитогенетического исследования бывает недостаточно для выдачи заключения о кариотипе, в этих случаях используют молекулярно-цитогенетические методы в частности флуоресцентную гибридизацию in situ (англ. - Fluorescence In Situ Hybridization - FISH) .

Появление новых технологий молекулярной цитогенетики, базирующихся преимущественно на in situ гибридизации нуклеиновых кислот, значительно расширило возможности хромосомной диагностики. Метод in situ гибридизации был разработан для локализации конкретных последовательностей ДНК непосредственно на цитологических препаратах. Произошел переход в идентификации хромосом и хромосомных районов с анализа цитологической организации хромосомы на анализ последовательностей ДНК, входящих в их состав. Сравнение эффективности классических цитологических методов выявления и анализа хромосомных перестроек, таких как дифференциальные окраски хромосом, с современными молекулярно-цитогенетическими технологиями показало, что при гематологических нарушениях цитологический анализ хромосом детектирует и правильно идентифицирует лишь около трети хромосомных перестроек, выявляемых при использовании спектрального кариотипирования (SKY). Еще около трети перестроек идентифицируются цитологическими методами неверно, а треть остается совсем незамеченной. Классические методы цитогенетического анализа позволяют выявлять лишь около 15 % хромосомных перестроек, идентифицируемых с помощью SKY.

В методе FISH используются флуоресцирующие молекулы для прижизненной окраски генов или хромосом. Метод используется для картирования генов и идентификации хромосомных аберраций.

Методика начинается с приготовления коротких последовательностей ДНК, называемых зондами, которые являются комплементарными по отношению к последовательностям ДНК, представляющим объект изучения. Зонды гибридизуются (связываются) с комплементарными участками ДНК и благодаря тому, что они помечены флуоресцентной меткой, позволяют видеть локализацию интересующих генов в составе ДНК или хромосом. В отличие от других методов изучения хромосом, требующих активного деления клетки, FISH можно выполнять на неделящихся клетках, благодаря чему достигается гибкость метода.

FISH может применяться для различных целей с использованием зондов трех различных типов:

  • * локус-специфичные зонды, связывающиеся с определенными участками хромосом. Данные зонды используются для идентификации имеющейся короткой последовательности выделенной ДНК, которая используется для приготовления меченого зонда и его последующей гибридизации с набором хромосом;
  • * альфоидные или центромерные зонды-повторы представляют собой повторяющиеся последовательности центромерных областей хромосом. С их помощью каждая хромосома может быть окрашена в различный цвет, что позволяет быстро определить число хромосом и отклонения от нормального их числа;
  • * зонды на всю хромосому являются набором небольших зондов, комплементарных к отдельным участкам хромосомы, но в целом покрывающими всю ее длину. Используя библиотеку таких зондов можно «раскрасить» всю хромосому и получить дифференциальный спектральный кариотип индивида. Данный тип анализа применяется для анализа хромосомных аберраций, например транслокаций, когда кусочек одной хромосомы переносится на плечо другой.

Гибридизация in situ с флуоресцентной меткой (FISH)

Материалом для исследования является кровь, костный мозг, биопсия опухоли, плацента, эмбриональные ткани или амниотическая жидкость. Образцы для исследования должны доставляться в лабораторию в свежем виде. Препараты (слайды) готовятся непосредственно из образцов ткани или после их культивирования. Могут использоваться как метафазные, так и интерфазные препараты клеток. Меченные флуоресцентными метками специфические ДНК-зонды гибридизуюся с хромосомной ДНК, причем можно одновременно использовать множественные зонды к разным локусам.

FISH является полезным и чувствительным методом цитогенетического анализа при выявлении количественных и качественных хромосомных аберраций, таких как делеции (в том числе и микроделеции), транслокации, удвоение и анэуплоидия. FISH на интерфазных хромосомах служит быстрым методом пренатальной диагностики трисомий по 21, 18 или 13 хромосомам или аберраций половых хромосом. В онкологии с помощью FISH можно выявлять рад транслокаций (bcr/abl, MLL, PML/RARA, TEL/AML1), связанных с гематологическими злокачественными новообразованиями. Метод также может использоваться для мониторинга остаточных явлений онкозаболевания после химиотерапии и пересадки костного мозга и выявления усиленных онкогенов (c-myc/n-myc), связанных с неблагоприятным прогнозом в отношении некоторых опухолей. FISH также используется для контроля приживаемости аллотрансплантата костного мозга, полученного от индивида противоположного пола.

FISH является чувствительным методом для идентификации хромосомных аберраций и одномоментного быстрого анализа большого (> 500) числа клеток. Метод обладает высокой точностью при идентификации природы хромосом и неизвестных фрагментов хромосомной ДНК.

  • Флуоресце́нтная гибридиза́ция in situ, или метод FISH (англ. fluorescence in situ hybridization - FISH), - цитогенетический метод, который применяют для детекции и определения положения специфической последовательности ДНК на метафазных хромосомах или в интерфазных ядрах in situ. Кроме того, FISH используют для выявления специфических мРНК в образце ткани. В последнем случае метод FISH позволяет установить пространственно-временные особенности экспрессии генов в клетках и тканях.

    Метод FISH используют в преимплантационной, пренатальной и постнатальной генетической диагностике, в диагностике онкологических заболеваний, в ретроспективной биологической дозиметрии.

Связанные понятия

Микроядро - в цитологии фрагмент ядра в эукариотической клетке, не содержащий полного генома, необходимого для её выживания. Является патологической структурой и может наблюдаться в клетках любых тканей. Обычно микроядра образуются в результате неправильного хода клеточного деления или фрагментации ядра в процессе апоптоза.

Гомологи́чная рекомбина́ция , или о́бщая рекомбина́ция, - тип генетической рекомбинации, во время которой происходит обмен нуклеотидными последовательностями между двумя похожими или идентичными хромосомами. Это наиболее широко используемый клетками способ устранения двух- или однонитевых повреждений ДНК. Гомологичная рекомбинация также создает разнообразие комбинаций генов во время мейоза, обеспечивающих высокий уровень наследственной изменчивости, что, в свою очередь, позволяет популяции лучше адаптироваться...

Космиды (Cosmides) - плазмиды, содержащие фрагмент ДНК фага лямбда включая cos-участок. Вместе с системами упаковки в фаговые частицы in vitro используются как векторные молекулы для клонирования генов и при построении геномных библиотек. Космиды были впервые сконструированы Коллинсом и Брюнингом в 1978 году. Их название происходит от сокращения двух терминов: cos-участок (сам термин в свою очередь происходит от англ. cohesive ends - липкие концы) и плазмида.

В связи с накоплением огромного количества информации о последовательностях генов, в настоящее время, для выявления функций генов, часто используют методы обратной генетики. Исследователи манипулируют последовательностями генов, изменяя или выключая тот или иной ген, и анализируют, к каким изменениям это приводит. Это путь обратной генетики: от гена к признаку/фенотипу. Прямая и обратная генетика – не взаимоисключающие подходы, а дополняющие друг друга в изучении функции гена.
(англ. transformation) - процесс поглощения бактериальной клеткой молекулы ДНК из внешней среды. Для того, чтобы быть способной к трансформации, клетка должна быть компетентной, то есть молекулы ДНК должны иметь возможность проникнуть в неё через клеточные покровы. Трансформация активно используется в молекулярной биологии и генетической инженерии.

Негомологи́чное соедине́ние концо́в , или негомологи́чное воссоедине́ние концо́в (англ. non-homologous end joining, NHEJ) - один из путей репарации двунитевых разрывов в ДНК. Негомологичным этот процесс называется потому, что повреждённые концы цепи соединяются лигазой напрямую, не нуждаясь в гомологичном шаблоне, в отличие от процесса гомологичной рекомбинации. Термин «негомологичное соединение концов» был предложен в 1996 году Муром и Хабером. NHEJ существенно менее точен, чем гомологичная рекомбинация...

Кулли́ны (англ. cullins) - семейство гидрофобных белков, служащих скэффолдом для убиквитинлигаз (E3). Все эукариоты, как представляется, имеют куллины. Они в сочетании с RING-белками образуют куллин-RING убиквитинлигазы (CRL), которые весьма разнообразны и играют роль во многих клеточных процессах, например, протеолизе (они разрушают около 20 % клеточных белков), эпигенетической регуляции, работе иммунитета растений, опосредованного салициловой кислотой.

Секвенирование нового поколения (англ. next generation sequencing, NGS) - техника определения нуклеотидной последовательности ДНК и РНК для получения формального описания её первичной структуры. Технология методов секвенирования нового поколения (СНП) позволяет «прочитать» единовременно сразу несколько участков генома, что является главным отличием от более ранних методов секвенирования. СНП осуществляется с помощью повторяющихся циклов удлинения цепи, индуцированного полимеразой, или многократного...

Квантеферон (иногда квантиферон, квантифероновый тест; англ. QuantiFERON) - торговое название иммуноферментного диагностического теста туберкулезной инфекции, производимого американской компанией QIAGEN. Текст использует технологию ELISA для обнаружения гамма-интерферонов иммунного ответа.

Флюоресцентная гибридизация in situ

Флюоресце́нтная гибридиза́ция in situ , или метод FISH (англ. Fluorescence in situ hybridization - FISH ) - цитогенетический метод, который применяют для детекции и определения положения специфической последовательности ДНК на метафазных хромосомах или в интерфазных ядрах in situ . Кроме того, FISH используют для выявления специфических мРНК в образце ткани . В последнем случае метод FISH позволяет установить пространственно-временные особенности экспрессии генов в клетках и тканях.

Зонды

При флюоресцентной гибридизации in situ используют ДНК-зонды (ДНК-пробы), которые связываются с комплементарными мишенями в образце. В состав ДНК-зондов входят нуклеозиды , меченные флюорофорами (прямое мечение) или такими конъюгатами, как биотин или дигоксигенин (непрямое мечение). При прямом мечении связавшийся с мишенью ДНК-зонд можно наблюдать при помощи флюоресцентного микроскопа сразу по завершении гибридизации. В случае непрямого мечения необходима дополнительная процедура окрашивания, в ходе которой биотин выявляют при помощи флуоресцентно-меченного авидина или стептавидина, а дигоксигенин - при помощи флюоресцентно-меченых антител. Хотя непрямой вариант мечения ДНК-проб требует дополнительных реактивов и временных затрат, этот способ позволяет добиться обычно более высокого уровня сигнала за счёт присутствия на молекуле антитела или авидина 3-4 молекул флюорохрома. Кроме того, в случае непрямого мечения возможно каскадное усиление сигнала.

Для создания ДНК проб используют клонированные последовательности ДНК, геномную ДНК, продукты ПЦР -реакции, меченые олигонуклеотиды , а также ДНК, полученную при помощи микродиссекции .

Мечение зонда может осуществляться разными способами, например, путем ник-трансляции или при помощи ПЦР с мечеными нуклеотидами.

Процедура гибридизации

Схема эксперимента по флюоресцентной гибридизации in situ для локализации положения гена в ядре

На первом этапе происходит конструирование зондов. Размер зонда должен быть достаточно большим для того, чтобы гибридизация происходила по специфическому сайту, но и не слишком большой (не более 1 тыс п.о), чтобы не препятствовать процессу гибридизации. При выявлении специфических локусов или при окраске целых хромосом надо заблокировать гибридизацию ДНК-проб с неуникальными повторяющимися ДНК-последовательностями путём добавления в гибридизационную смесь немеченой ДНК повторов (например, Cot-1 DNA). Если ДНК-зонд представляет собой двуцепочечную ДНК, то перед гибридизацией её необходимо денатурировать.

На следующем этапе приготавливают препараты интерфазных ядер или метафазных хромосом. Клетки фиксируют на субстрате, как правило, на предметном стекле, затем проводят денатурацию ДНК. Для сохранения морфологии хромосом или ядер денатурацию проводят в присутствии формамида , что позволяет снизить температуру денатурации до 70°.

Визуализацию связавшихся ДНК-зондов проводят при помощи флуоресцентного микроскопа. Интенсивность флюоресцентного сигнала зависит от многих факторов - эффективности мечения зондом, типа зонда и типа флюоресцентного красителя.

Литература

  • Рубцов Н.Б. Методы работы с хромосомами млекопитающих: Учеб. пособие / Новосиб. гос. ун-т. Новосибирск, 2006. 152 с.
  • Рубцов Н.Б. Гибридизация нуклеиновых кислот in situ в анализе хромосомных аномалий. Глава в книге «Введение в молекулярную диагностику» Т. 2. «Молекулярно-генетические методы в диагностике наследственных и онкологических заболеваний» / Под ред. М.А. Пальцева, Д.В. Залетаева. Учебная литература для студентов медицинских вузов. М.: Медицина, 2011. Т. 2. С. 100–136.

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Флюоресцентная гибридизация in situ" в других словарях:

    У этого термина существуют и другие значения, см. гибридизация. Гибридизация ДНК, гибридизация нуклеиновых кислот соединение in vitro комплементарных одноцепочечных нуклеиновых кислот в одну молекулу. При полной комплементарности… … Википедия

Краткий ответ : Метод флюоресцентной гибридизации in situ (FISH - fluorescence in situ hybridization) включа­ет применение уникальных нуклеотидных после­довательностей ДНК в качестве зонда для поиска нужных последовательностей ДНК в материале, полученном от пациента. Метод основан на комплементарном связывании ДНК-зонда с ДНК метафазных хромосом или интерфазных клеток. ДНК-зонд и исследуемую ДНК денатурируют, образуется одноцепочная ДНК. ДНК-зонд до­бавляют к препарату хромосом, инкубируют определенное время. Присутствие или отсутствие меченного флюо­рохромом зонда в составе ДНК после гибридизации определяется при исследовании хромосом с помо­щью флюоресцентной микроскопии.

Развёрнутый ответ : Метод флуоресцентной гибридизации in situ позволяет выявлять индивидуальные хромосомы или их отдельные участки на препаратах метафазных хромосом или интерфазных ядрах на основе комплементарного взаимодействия ДНК-зонда, конъюгированного с флуоресцентной меткой и искомого участка на хромосоме. Для визуализации на хромосоме пептидно-нуклеиновых соединений применяют PNA-зонды на основе белкового продукта.
Метод основан на комплементарном связывании ДНК-зонда с ДНК метафазных хромосом или интерфазных клеток и включает следующие этапы:
1. Денатурация двухцепочечной ДНК зонда и ДНК мишени до одноцепочечных под воздействием высокой температуры или химических агентов.
2. Гибридизация ДНК-зонда с ДНК-мишенью по принципу комплементарности с образованием двухцепочечной гибридной молекулы
3. Постгибридизационная отмывка для удаления негибридизовавшегося ДНК-зонда
4. Анализ гибридизационных сигналов с люминисцентном микроскопе

Преимущества метода молекулярно-генетической диагностики FISH включают быстрый ана­лиз большого числа клеток, высокую чувствитель­ность и специфичность, возможность исследовать некультивируемые и неделящиеся клетки.
Недостатки метода заключаются в невозможности получить информацию о физическом состоянии исследу­емой ДНК или участка хромосомы.
FISH применяют в пренатальной молекулярно-генетической диагностике и для характеристики опухолей; в педиатрической практике его используют, как правило, для иденти­фикации субмикроскопических делеций, ассоции­рованных со специфическими пороками развития. Синдромы, в основе которых лежат микроделеции, раньше считались заболеваниями неизвестной этиологии, так как хромосомные делеции и пере­стройки, вызывающие развитие этих заболеваний, обычно не визуализируются при традиционных методах хромосомного анализа. Такие мелкие де­леции в специфических участках хромосом мож­но с большой точностью выявить методом FISH. К заболеваниям, обусловленным субмикроскопическими делециями, относятся синдромы Прадера-Вилли, Ангельмана, Вильямса, Миллера-Дикера, Смит-Мадженис и велокардиофациальный синдром . FISH облегчает диагностику этих синдромов в нетипичных случаях, особенно в младенческом возрасте, когда еще отсутствуют многие диагностически значимые признаки забо­левания. Применение этого метода молекулярно-генетической диагностики целесообразно также в подростковом и во взрослом возрасте, ког­да типичные клинические признаки заболевания, характерные для детского возраста, претерпевают изменения.

121. ДНК-зонды. Их применение в определении наследственных заболеваний.

Краткий обзор

ДНК – зонд - это короткий фрагмент ДНК, конъюгированный с флуоресцеином, ферментно, или радиоактивным изотопом, который используется для гибридизации с комплементарным участком молекулы ДНК – мишени.

Основная часть

Системы ДНК-диагностики

Информация о всем многообразии свойств организма заключена в его генетическом материале. Так, патогенность бактерий определяется наличием у них специфического гена или набора генов, а наследственное генетическое заболевание возникает в результате повреждения определенного гена. Сегмент ДНК, детерминирующий данный биологический признак, имеет строго определенную нуклеотидную последовательность и может служить диагностическим маркером.

В основе многих быстрых и надежных диагностических методов лежит гибридизация нуклеиновых кислот - спаривание двух комплементарных сегментов разных молекул ДНК. Процедура в общих чертах состоит в следующем.

1. Фиксация одноцепочечной ДНК-мишени на мембранном фильтре.

2. Нанесение меченой одноцепочечной ДНК-зонда, которая при определенных условиях (температуре и ионной силе) спаривается с ДНК-мишенью.

3. Промывание фильтра для удаления избытка несвязавшейся меченой ДНК-зонда.

4. Детекция гибридных молекул зонд/мишень.

В диагностических тестах, основанных на гибридизации нуклеиновых кислот, ключевыми являются три компонента: ДНК-зонд, ДНК-мишень и метод детекции гибридизационного сигнала. Система детекции должна быть в высшей степени специфичной и высокочувствительной.

*Флуоресцеин (диоксифлуоран, уранин А) - органическое соединение, флуоресцентный краситель. В аналитической химии флуоресцеин используется в качестве люминесцентного кислотно-основного индикатора. В биохимии и молекулярной биологии изотиоцианатные производные флуоресцеина в качестве биологических красок для определения антигенов и антител.

* Детекция – это обнаружение, выявление, нахождение чего либо.

*конъюгирование=сопряжение

*Если в одной "пробирке" провести плавление и отжиг смеси ДНК, например, человека и мыши, то некоторые участки цепей ДНК мыши будут воссоединяться с комплементарными участками цепей ДНК человека с образованием гибридов. Число таких участков зависит от степени родства видов. Чем ближе виды между собой, тем больше участков комплементарности нитей ДНК. Это явление называется гибридизация ДНК-ДНК.

122. Методы и условия применения прямой ДНК-диагностики.

Краткий обзор:

С помощью прямых методов выявляются нарушения в первичной нуклеотидной последовательности ДНК (мутации и их типы). Прямые методы отличаются точностью, достигающей почти 100 %.

Целью прямой диагностики является идентификация мутантных аллелей (нарушения в первичной нуклеотидной последовательности ДНК, мутации и их типы).

Недостатком метода прямой ДНК-диагностики является необходимость знания точной локализации гена и спектра его мутаций. Методы прямой ДНК-диагностики показаны для таких заболеваний, как фенилкетонурия (мутация R408W), муковисцидоз - (наиболее частая мутация delF508), хорея Гентингтона (экспансия тринуклеотидных повторов-CTG-повторы) и др.

Полный ответ:

С помощью прямых методов выявляются нарушения в первичной нуклеотидной последовательности ДНК (мутации и их типы). Прямые методы отличаются точностью, достигающей почти 100 %. Однако на практике указанные методы могут применяться при определенных условиях:

1) известной цитогенетической локализации гена, ответственного за развитие наследственного заболевания,

2) должен быть клонированным ген заболевания и известна его нуклеотидная последовательность.

Целью прямой диагностики является идентификация мутантных аллелей (нарушения в первичной нуклеотидной последовательности ДНК, мутации и их типы). Высокая точность метода прямой ДНК-диагностики в большинстве случаев не требует ДНК-анализа всех членов семьи, так как выявление мутации в соответствующем гене позволяет почти со 100-процентной точностью подтвердить диагноз и определить генотип всех членов семьи больного ребенка, включая гетерозиготных носителей.

Недостатком метода прямой ДНК-диагностики является необходимость знания точной локализации гена и спектра его мутаций.

Методы прямой ДНК-диагностики показаны для таких заболеваний, как фенилкетонурия (мутация R408W), муковисцидоз - (наиболее частая мутация delF508), хорея Гентингтона (экспансия тринуклеотидных повторов-CTG-повторы) и др.

Однако к настоящему времени гены многих заболеваний не картированы, неизвестна их экзонно-интронная организация, и многие наследственные болезни отличаются выраженной генетической гетерогенностью, что не позволяет в полной мере использовать прямые методы ДНК-диагностики. Поэтому информативность метода прямой ДНК-диагностики широко варьирует. Так, при диагностике хореи Гентингтона, ахондроплазии она составляет 100 %, при фенилкетонурии, муковосицидозе, адреногенитальном синдроме - от 70 до 80 %, а при болезни Вильсона-Коновалова и миопатии Дюшенна/Бекера - 45-60 %. В связи с этим используются косвенные методы молекулярно-генетической диагностики наследственных болезней.

gastroguru © 2017