Выбор читателей
Популярные статьи
В 1704 г. выходит знаменитый труд Исаака Ньютона (1642- .1727) «Оптика», в котором впервые был описан экспериментальный метод исследования цветового зрения. Он называется методом аддитивного смешения цветов, и полученные этим методом результаты положили начало экспериментальной науке о цвете.
Таким образом, Ньютон показал, что цвета образуются не призмой, а...! И вот здесь необходимо на минуту остановиться, потому что до сих пор были физические опыты со светом и только здесь начинаются опыты по смешению цветов. Итак, семь цветных лучей, смешанных вместе, дают белый луч, а значит, именно состав света был причиной появления цвета, но куда же они деваются после смешения? Почему, как ни разглядываешь белый свет, в нем нет никакого намека на цветные лучи, из которых он состоит?
Именно этот феномен, который даст возможность сформулировать один из законов смешения цветов, и привел Ньютона к разработке метода смешения цветов. Обратимся снова к рис. 1.1. Поставим вместо сплошного экрана 1 другой экран 1, в котором вырезаны отверстия так, чтобы только часть лучей (два, три или четыре из семи) проходила, а остальные загораживались светонепроницаемыми перегородками. И здесь начинаются чудеса. На экране 2 появляются цвета неизвестно откуда и неизвестно каким образом. Например, мы закрыли путь лучам фиолетовому, голубому, синему, желтому и оранжевому и пропустили зеленый и красный лучи. Однако, пройдя через линзу и дойдя до экрана 2, эти лучи исчезли, но вместо них появился желтый. Если посмотреть на экран 1, мы убеждаемся, что желтый луч задержан этим экраном и не может попасть на экран 2, но тем не менее на экране 2 точно такой же желтый цвет. Откуда он взялся?
Такие же чудеса происходят, если задержать все лучи, кроме голубого и оранжевого. Опять исчезнут исходные лучи, а появится белый свет, такой же, как если бы он состоял не из двух лучей, а из семи. Но самое удивительное явление возникает, если пропустить только крайние лучи спектра - фиолетовый и красный. На экране 2 появляется совершенно новый цвет, которого не было ни среди исходных семи цветов, ни среди их остальных комбинаций,- пурпурный.
Эти поразительные феномены заставили Ньютона внимательно рассмотреть лучи спектра и их разные смеси. Если и мы вглядимся в спектральный ряд, то увидим, что отдельные составляющие спектра не отделяются друг от друга резкой границей, а постепенно переходят друг в друга так, что соседние в спектре лучи кажутся более похожими друг на друга, чем дальние. И здесь Ньютон открыл еще один феномен.
Оказывается, для крайнего фиолетового луча спектра наиболее близкими по цвету являются не только синий, но и неспектральный пурпурный. И этот же пурпурный вместе с оранжевым составляет пару соседних цветов для крайнего красного луча спектра. То есть если расположить цвета спектра и смеси в соответствии с их воспринимаемым сходством, то они образуют не линию, как спектр, а замкнутый круг (рис. 1.2), так что наиболее разные по положению в спектре излучения, т. е. наиболее различающиеся физически лучи, окажутся очень близкими по цвету.
«Когда я говорю о свете и лучах как о цветных или вызывающих цвета, следует понимать, что я говорю не в философском смысле, а так, как говорят об этих понятиях простые люди. По-существу же лучи не являются цветными; в них нет ничего, кроме определенной способности и предрасположения вызывать ощущение того или иного цвета. Так же как звук... в любом звучащем теле есть не что иное, как движение, которое органами чувств воспринимается в виде звука, так и цвет предмета есть не что иное, как предрасположение отражать тот или иной вид лучей в большей степени, чем остальные, цвет лучей - это их предрасположение тем или иным способом воздействовать на органы чувств, а их ощущение принимает форму цветов» (Ньютон, 1704).
Рассматривая взаимоотношение между разными по физическому составу лучами света и вызываемыми ими цветовыми ощущениями, Ньютон первый понял, что цвет есть атрибут восприятия, для которого нужен наблюдатель, способный воспринять лучи света и интерпретировать их как цвета. Сам свет окрашен не больше, чем радиоволны или рентгеновские лучи.
Таким образом, Ньютон первый экспериментально доказал, что цвет - это свойство нашего восприятия, и природа его в устройстве органов чувств, способных интерпретировать определенным образом воздействие электромагнитных излучений.
Сейчас мы знаем, что Ньютон ошибся, предположив резонансный механизм генерации цвета (в отличие от слуха, где первый этап преобразования механических колебаний в звук осуществляется именно резонансным механизмом, цветовое зрение устроено принципиально иначе), на для нас более важно другое, то, что Ньютон впервые выделил специфическую триаду: физическое излучение - физиологический механизм - психический феномен, в которой цвет определяется взаимодействием физиологического и психологического уровней. Поэтому мы можем назвать точку зрения Ньютона идеей о психофизиологической природе цвета.
Впервые опыт по разложению света в спектр был сделан Исааком Ньютоном в 1666 году. Он проделал маленькое отверстие в оконном ставне и в солнечный день получил узкий пучок света, на пути которого поставил треугольную стеклянную призму. Пучок преломился в ней, и на противоположной стене появилась цветная полоса, где расположились в определённом порядке все цвета радуги: красный, оранжевый, жёлтый, зелёный, голубой, синий и фиолетовый. Эту цветную полосу Ньютон назвал спектром (от латинского «спектрум» — видимое).
Наименьшего отклонения от первоначального направления падения испытывают красные лучи, а наибольшего — фиолетовые.
После такого эксперимента Ньютон сделал первый вывод : разложение белого света в цветной спектр означает, что белый свет имеет сложную структуру, то есть является составным , то есть смесью всех цветов радуги.
Второй вывод Ньютона состоял в том, что свет разных цветов характеризуется разными показателями преломления в определённой среде . Это означает, что абсолютный показатель преломления для фиолетовых цветов больший, чем для красных.
Зависимость показателя преломления света от его цветов Ньютон назвал дисперсией (от латинского слова dispersio — «рассеивание»).
Однако Ньютон был сторонником корпускулярной теории и объяснить явление дисперсии не мог.
Согласно волновой теории цвета света определяются частотой электромагнитной волны , которой является свет. Наименьшую частоту имеет красный свет, наибольшую — фиолетовый. Исходя из опытов Ньютона и опираясь на волновую теорию света, следует вывод: показатель преломления света зависит от частоты световой волны.
Дисперсия света — это явление разложения света в спектр, обусловленное зависимостью абсолютного показателя преломления среды от частоты световой волны.
Разным скоростям распространения волн соответствуют разные абсолютные показатели преломления среды.
Значит, луч красного цвета преломляется меньше из-за того, что он имеет в веществе наибольшую скорость, а луч фиолетового цвета — наименьшую.
Частота и длина волны связаны между собой
Из формулы видно, что длина волны прямо пропорциональна скорости света и обратно пропорциональна частоте. Отсюда следует то, что длина волны больше в той среде, где скорость волны больше (при заданной частоте).
Из формул видно, что
Поэтому можно утверждать, что абсолютный показатель преломления уменьшается соответственно к увеличению длины световой волны и увеличивается соответсвенно к уменьшению длины световой волны.
Следовательно, во время перехода из одной среды в другую скорость распространения световой волны, а значит и длина волны, изменяется , а частота, а значит и цвет света, остаётся неизменной .
На сетчатке глаза расположены светочувствительные элементы – нервные окончания, которые называют «палочками» и «колбочками». Палочки отличают только светлое от тёмного. Колбочки есть трёх типов – их условно называют «красные», «зелёные» и «синие». Потому что «красные» колбочки наиболее чувствительны к красному цвету, «зелёные» — к зелёному, а «синие» — к синему. И всё многообразие видимых нами цветов обусловлено «сигналами», посылаемыми в мозг всего тремя типами колбочек.
Сложение цветов
Вычитание цветов
к.т.н. Академик МИА
ООО ИКЦ "Системы и технологии"
Главный научный сотрудник
Аннотация:
В статье на основе анализа оптических опытов Ньютона и новых опытов выявлена неточность выводов Ньютона относительно цветных составляющих светового потока и обосновано, что свет состоит из трех материальных носителей, индивидуальное и совместное воздействие которых на зрительный аппарат животного организма вызывает соответствующие ассоциации головного мозга, отображающие цветовое многообразия природы.
The article based on the analysis of optical experiments of Newton and new experiments revealed the inaccuracy of Newton"s insights regarding color components of light and proved that light consists of three physical media, individual and joint impact on the visual apparatus of the animal organism calls the appropriate Association of the brain that shows the color diversity of nature.
Ключевые слова:
Ньютон; призма; дисперсия; носители цветных составляющих.
Newton; prism; dispersion; carriers of non-ferrous components.
УДК 535.1, 535.6
Опыты Ньютона (1642-1727) по дисперсии света доложены им в 1672 г. Лондонскому Королевскому Обществу . И именно с этого момента результаты опытов подвергались критике известными учеными. Острота складывавшихся в то время отношений между Ньютоном и оппонентами была почти такой же, как и между Бруно и отправившими его на костер членами ученого сообщества Италии. Тем не менее, на сегодняшний день в виду как бы очевидности результатов этих опытов, часть которые легко проверяются при соблюдении условий проведения опытов по описанию Ньютона, выводы великого физика признаны современной наукой в качестве знаний, полученных опытным путем. Для понимания замеченных в экспериментах Ньютона неточностей приводим на рис.1 его схему опытов с двумя призмами.
Рис.1 ([Рисунок 118 из «Оптики» Ньютона (год издания 1721 год). «Пояснение. Пусть S представляет Солнце, F - отверстие в окне, ABC - первую призму, DH - вторую призму, Y - круглое изображение Солнца, образуемое непосредственно пучком света, когда призмы убраны, РТ - удлинённое изображение Солнца, образуемое тем же пучком при прохождении только через первую призму, когда вторая призма убрана, pt - изображение, получаемое при перекрестных преломлениях обеих призм вместе»]
Как известно, Ньютон полученную картину цветных полос назвал дисперсией. В полученной им дисперсии он выделил цвета КРАСНЫЙ, ОРАНЖЕВЫЙ, ЖЕЛТЫЙ, ЗЕЛЕНЫЙ, ГОЛУБОЙ, СИНИЙ, ФИОЛЕТОВЫЙ. Эти цвета он назвал монохроматическими цветами и полагал, что "Все цвета относятся безучастно к любым границам тени, и поэтому различие цветов одного от другого не происходит от различных границ тени, вследствие чего свет видоизменялся бы различным образом, как думали до сих пор философы".
Пропустив разложенный первой призмой световой поток через вторую призму Ньютон полагал, что для всех выделенных им цветовых составляющих соблюдается закономерность - эти цветные составляющие имеют разный коэффициент преломления.
При отмеченных Ньютоном обстоятельствах, которые как бы проявляются в повторяемых кем-либо указанных опытах, необходимо было бы согласиться с его выводами:
Световой поток состоит из семи монохроматических составляющих, включая красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый;
Каждая из перечисленных составляющих имеет свой коэффициент преломления.
При этом отметим, что Ньютон с особой категоричностью отмечал, что полученную им дисперсию он осуществлял на весьма узком отверстии (вероятно, не больше диаметра булавки).
Данные экспериментов Ньютона с призмой интерпретировались физиками вплоть до середины 19 века как доказательства корпускулярной гипотезы светового потока. В 20 веке ученые пересмотрели свое отношение к этим опытам в связи с экспериментами Френеля, Юнга и гипотезой Максвелла об электромагнитной природе светового потока. Но, как отмечал Эйнштейн, «…иистория поисков теории света никоим образом не окончена. Приговор XIX столетия не был последним и окончательным. Для современных физиков вся проблема выбора между корпускулами и волнами существует вновь, теперь уже в гораздо более глубокой и сложной форме. Примем поражение корпускулярной теории света до тех пор, пока мы не обнаружим, что характер победы волновой теории проблематичен» .
Результаты новых экспериментов с призмой создают непреодолимые препятствия для их объяснения с позиций волновой гипотезы светового потока, но вполне легко объясняются с позиций корпускулярной гипотезы.
В новых экспериментах вместо круглого отверстия была использована вертикальная щель по рис.2.
Рис. 2. Новая схема опытов
Ширину щели можно изменять с помощью подвижных непрозрачных створок «а» и «б» черного (темного) цвета. Створки размещаются вертикально на стекле окна. Наблюдая эту щель днем через одну часть (левую или правую, показано штриховой и сплошной стрелками) горизонтально расположенной призмы, мы пронаблюдаем любопытное явление .
Это явление заключается в том, что у образующих щель внутренних граней створок образуется по паре цветных полос. Одну пару составляют вертикальные полосы красного и желтого цвета. Другую пару составляют полосы бирюзового и фиолетового цвета. При этом с увеличением расстояния между призмой и щелью, ширина цветных полос увеличивается, а границы между желтой полосой и бирюзовой сближаются. Сближение границ желтой и бирюзовой полос можно осуществить поворотом призмы вокруг вертикальной оси. При достаточном удалении створок друг от друга между желтой и бирюзовой полосами явно наблюдается полоса белого светового потока (рис.3 слева).
При сдвигании створок «а» и «б» границы между полосами желтого и бирюзового цвета приближаются друг к другу, что ведет к уменьшению ширина полосы белого цвета вплоть до нуля при некоторой ширине щели. Дальнейшее сужение щели приводит к пересечению (наложению) желтой и бирюзовой полос. При этом площадь пересечения желтой и бирюзовой полос окрашивается в зеленый цвет (рис.3, виды II и IV).
Рис.3. Наблюдаемая картина по схеме опыта по рис.2
При изменении угла обзора (со сплошной стрелки на штриховую стрелку) пары цветных полос меняются местами. Но при этом по-прежнему в средней части пересечения желтой и бирюзовой полос имеет место быть полоса зеленого цвета.
Из приведенных на рис. 3 результатов экспериментов следует, что дисперсионная картины содержит полосу зеленого цвета, который не является монохроматическим. Его возникновение определяется пересечением полос желтого и бирюзового цвета. Т.е. зеленый цвет в световом потоке не является монохроматическим. Вводя понятие «носитель цветов» в световом потоке, результат эксперимента позволяет утверждать - возникновение в мозгу человека образа зеленого цвета является следствием одновременного воздействия на чувствительные элементы глаз носителей желтого и бирюзового цвета.
Но если в образование зеленого цвета участвуют два носителя, то он является бихроматическим. Это должно влиять на результаты опытов с двумя призмами П1 и П2 (рис. 4). И это было получено в точном соответствии с ожиданием.
Рис.4. Результаты опытов с двумя призмами
Необходимо отметить, что на рис. 4 при изменении обзора через второе крыло второй призмы окраска участков на концах красной, зеленой и фиолетовой полосок меняются местами.
Из этих опытов следует:
Цвет зеленой полосы не является монохроматическим. Зеленый цвет является следствием образования в головном мозге одновременного воздействия на чувствительные элементы глаз носителей желтого и бирюзового цветов;
Цвет красной полосы не является монохроматическим. Красный цвет является следствием одновременного воздействия на чувствительные элементы глаз носителей желтого и лилового цветов (на рис. 4 - нижняя полоса дисперсионной картины);
Цвет фиолетовой полосы не является монохроматическим. Фиолетовый цвет является следствием одновременного воздействия на чувствительные элементы глаз носителей лилового и бирюзового цветов (на рис. 4 - верхняя полоса дисперсионной картины);
Цвет желтой полосы, как и цвет бирюзовой полосы, является монохроматическим.
Полоски красного, зеленого и фиолетового цветов от первой призмы при пропускании через втору призму уменьшаются по длине на линейную величину соответствующих двух цветов, образующихся на концах этих полосок.
1. Гипотеза Нютона о цветных составляющих светового потока, по которой солнечный свет состоит из семи монохроматических цветов (красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый) не соответствует действительности.
2. Индивидуальных (моно) носителей красного, зеленого и фиолетового цветов в природе не существует. Эти цвета являются следствием воздействия на чувствительную систему глаз не менее двух носителей.
3.В природе существуют три носителя - носитель бирюзового, носитель желтого и носитель лилового цветов. Многообразие цветных оттенков определяется комбинацией соответствующих количеств носителей бирюзового, лилового и желтого цветов (Бог Любит Жизнь).
4. Ограничение числа носителей светового потока числом 3 позволяет утверждать, что белый цвет светового потока определяется одновременным воздействием на глаз равных долей носителей бирюзового, лилового и желтого цветов.
Библиографический список:
Рецензии:
22.06.2017, 15:44 Сухарев Илья Георгиевич
Рецензия
: Рецензия на статью ОПЫТЫ НЬЮТОНА С ПРИЗМОЙ: СУЩНОСТЬ И СЛЕДСТВИЯ (автор Тарханов Олег Владимирович к.т.н. Академик МИА, ООО ИКЦ "Системы и технологии", Главный научный сотрудник). Главное следствие опытов Ньютона есть вывод, что белый свет Солнца содержит в себе спектр волн различных частот. Для опыта использовалось свойство зависимости угла преломления от частоты волны, проходящей через границу раздела двух сред с разной плотностью. Пропуская свет через призму, где имело место двойное лучепреломление, на экране можно было видеть цветовую гамму. Он, как признанный автор этого опыта, выделил 7 основных цветов. К слову сказать, будь он дальтоником, их было бы меньше. Но это совершенно неважно для смысла опыта, названного дисперсией, то есть разложением светового пучка волн на частотные составляющие. Подобный опыт может быть произведен, например, в диапазоне СВЧ с диэлектрической радиопрозрачной призмой и смысл его останется прежним без выделения каких-либо цветовых гамм. Опыты автора статьи можно условно разделить условно на 2 темы. Первую можно условно назвать наблюдением калйдоскопических эффектов, а вторую - свойством зрения воспринимать смешанные цвета как цвет, отличающийся от исходных. Первый опыт весьма положительно влияет как на детей, так и на взрослых, а вторым опытом профессионально пользуются художники и изготовители систем сведения лучей кинескопов. То есть, речь идет об эффектах известных. Публикацию не рекомендую.
5.07.2017, 17:24
Рецензия
: Если большую часть ответов автора на рецензии и отзывы адаптировать к формату статьи в виде ли обсуждения и дискуссии, в другом виде, то рецензент выражает положительную реакцию на статью и рекомендует её к опубликованию. С уважением к автору!
Комментарии пользователей:
2.07.2017, 14:06 Мирмович-Тихомиров Эдуард Григорьевич
Отзыв : Уважаемый Олег Владимирович! Возможно, Вы просто хотели обосновать некую фундаментальность формулы RGB в IT и эту триаду спараллелить с нашими палочками и колбочками? А замахнулись-то вначале на дуализм. С т.н. "дуализмом" то всё просто. Вы любитель бильярда? Упругие, обтекающие, подкручивающие удары в шероховатом и гладком поле. Поставьте на место шаров из слоновой кости гидродинамический сферообразный (шарообразный) объект. Вот вам и дифракция, и дуализм, и всяческие квантовые с туннельными переходами барьеров. Пока нет времени разобраться в смысле фундаментальности Вашей статьи. Может, дискуссия здесь с сомнениями Ильи Георгиевича этому поспособствует! А пока в рецензируемый формат ничего написано не будет, дабы возможного ребёнка из ванны не выкинуть. |
3.07.2017, 9:12 Тарханов Олег Владимирович
Отзыв : ОТВЕТ НА КОММЕНТАРИЙ Мирмович-Тихомирова Эдуарда Григорьевича Уважаемый Эдуард Григорьевич! Спасибо за прочтение статьи и мысль «А пока в рецензируемый формат ничего написано не будет, дабы возможного ребёнка из ванны не выкинуть». Судя по вопросам, вероятно, Вас интересует движимые мною мои желания в отношении «RGB, IT, колбочек и палочек» перед проведением описанного в статье опыта? Ответ на вопрос: «Такого желания у меня не было». Относительно истории желания опубликовать статью в журнале 1. В 2009 г. я продемонстрировал опыт, проведенный мной несколько десятков лет до того, заместителю редактора «Советской Башкирии». Он оказался выпускником технического вуза и хорошо был знаком с опытами Ньютона. Усмотрев разные результаты в двух реальных опытах, В. Скворцов счел возможным опубликовать в газете продемонстрированный ему опыт. С тех пор прошло восемь лет. Вполне естественно, что я отдавал себе отчет о следствиях результатов опыта с изменяемым линейным размером отверстия. Новый опыт, в котором этот размер можно было изменять от любых больших размеров до много меньших, чем у иголочного отверстия Ньютона, свидетельствовал – молодой Ньютон ошибся в определении количества цветов. Но главное, что и не могло быть определено в опыте Ньютона, это характер зеленой составляющей спектра. Этому мешал малый размер отверстия, при котором нельзя было исследовать сведение желтой и изумрудной составляющей до приграничного соприкосновения и последующего постепенного их пересечения. Новый опыт, опровержения мне неизвестно, демонстрирует, что эта «зеленая» составляющая не является монохроматической. Расширяя эксперимент уже по найденному Ньютоном пути (использование второй призмы), удалось исключить монохроматизм красной и фиолетовой составляющей. В статье это также описано. Остальное изложено в статье не в виде утверждений, а в виде описания опытов и следствий эксперимента. Естественно, что я неоднократно демонстрировал самой разной аудитории опыт с призмой и регулируемой, так сказать, щелью. При этом, как ученики школы, так и студенты Вузов и преподаватели, подтверждали, что они (на вопрос – «какие цветные полосы видите?») не видят иных цветов, кроме легко наблюдаемых (по паре у краев разных створок и зеленого после перекрытия желтой и бирюзовой полос). Т.е. среднее зрение участников рассмотрения эксперимента, как и автора опыта, было вполне «здоровым» - без «дальтонических» отклонений. Мнение Ньютона о неприемлемости гипотез и мнение Эйнштейна о шаткости дуализма стало решающим для написания статьи. Да и возраст подпирает. Конечное, я знал и знаю силу «любви» убежденных в дуализме. Но, как говорится, «шила в мешке не утаишь» и «Платон мне друг, но истина дороже». 2. Относительно шаров. К сожалению, эффект Комптона не подтверждает дуализм фотона. 3. Учитывая изложенное, полагаю, что мною, как выпускником инженерно-физического факультета, двигало и движет простое желание – через сорок лет после проведения эксперимента представить этот эксперимент на суд читателя и физической общественности. При этом я учитывал, что живой Гук довел Ньютона до крайней степени осторожности – «Оптику» Ньютон опубликовал после смерти Гука, который тридцать лет «ел» Ньютона живьем. Но мы, как сообщество ученых, играем роль, так сказать, коллективного «ГУКА». К сожалению, это факт. Последователей Ньютона, Планка и Эйнштейна не хватает. Это же надо – Ньютону хлопали за эксперимент, который не вполне корректен, а тут – закапывают очевидное при весьма легковесных намеках. Конечное, «тяжесть» дуализма – весьма и весьма неподъемная. Описанный эксперимент – всего лишь веха. |
3.07.2017, 14:04 Мирмович-Тихомиров Эдуард Григорьевич
Отзыв : Продолжая диспут вокруг Ваших опытов... 1. В IT цвета RGB, как Вам известно (и всем), считаются фундаментальными, не фрактально аддитивными, и их сложение или суперпозиция порождает все другие цвета. Но сами цвета - это результат взаимодействия как минимум трёх элементов природы: частоты f с её разной для разных f дисперсией df + взаимодействие с собственными частотами наших очей + нервные и мозговые преобразования в наши ощущения (где и редкое место дальтонизму, не изученным пока цветовым вариациям аутистического спектра и т.д.). Вы же утверждаете своими опытами, что первичным, фундаментальным и "универсальной константой" в нашей вселенной являются не эти три частоты, и не частота (микродиапазон) жёлтого цвета (величину приводить не буду), а зелёного. Это так? 2. Целиком согласен. И это отдельный разговор. Есть такие удары в бильярде, когда биток полностью обтекает шар-мишень и движется против любых законов Ньютона и дуализма. А уж о способных к деформации частицах типа мыльных пузыриков и говорить нечего. Непрерывность и волновая природа - это проекция наших интерпретаций на основе наших "недознаний" чего-то. К непрерывности и вечности относится только всеобщее вращение и эффекты квазитурбулентности, порождающие более мелкие структуры вращения вплоть до микро и т.н. элементарных частиц. 3. В спорах Р. Гука, Г. Лейбница и даже Дж. Беркли, я на их стороне, а не на стороне И. Ньютона. Если Вы про мои "весьма легковесные намёки", то я именно не закапываю ни свои глаза на материал, ни его самого в какую-нибудь яму, а проявляю к нему интерес перед рецензией. |
4.07.2017, 15:34 Тарханов Олег Владимирович
Отзыв : ОТВЕТ НА ОТЗЫВ от 3.07.2017 Мирмович-Тихомирова Эдуарда Григорьевича Уважаемый Эдуард Григорьевич! 1. Позвольте очередное разъяснение по статье начать с части Вашего третьего пункта. Ваше отношение к статье мне представляется вполне логичным и …правильным, учитывая «тяжесть дуализма». К «намекам» в виде утверждений без обоснований и не имеющим места быть я описал свое отношение в ответе на рецензию Сухарева Ильи Георгиевича. 2. Относительно «IT цвета RGB» и Вашего мнения относительно частот носителей. 2.1. Приходится согласиться с тем, что у носителей светового потока гипотетичным (не могу обосновать другого) и пока единственным признаком их отличий друг от друга является частота. Не могу выдвигать обоснованных на практике утверждений и о природе частоты световых составляющих. 2.2. Касательно взаимодействия выявленных в опыте носителей, отвечающих за цветные реакции головного мозга, то относительно Ваших размышлений о следствиях взаимодействия выявленных носителей с нашими органами оптических преобразований, то с этим, за неимением другого, приходится согласиться. 2.3. Касательно фундаментальности "универсальной константы" в опоре на некие параметры носителя желтого цвета или носителя зеленого цвета, то я полагаю, что если и есть такая «универсальная константа», то ее природа связана с тремя носителями, а не с одним из них. Причем, природу связи (в неформальном смысле, как, например, у Планка) предстоит еще определить. Прямо из проведенных опытов, на мой взгляд, эта природа не следует. Весьма важны сведения о веществах в чувствительных элементах глаз и сущности взаимодействия носителей с этими веществами. Но этих сведений у меня пока нет. В тоже время, индивидуальных носителей Green, Red и Blue, как следует из описанного в статье опыта, в природе нет. В этом и есть ошибочность теории и несовершенство практики ргбистов. 3. Полагаю, что у нас достаточно оснований считаться с мнениями трех, указанных Вами ученых. Возможно, Ньютону больше «повезло» в плане его сугубо изобретательских «откровений» (отверстие малого диаметра), применение второй призмы и молчания на протяжении тридцати лет. На отверстии большего диаметра (около трех диаметров отверстия по Ньютону и близком размещении призмы от отверстия) его ждало бы разочарование – непрерывного спектра он не получил бы. Но имел бы всего четыре цветных полосы, по две пары которых (красный – желтый и бирюзовый – фиолетовый) были бы разделены полосой белого света, а не зеленого. Тарханов О.В. |
Опыт Дисперсия света
Сценарий проведения опыта
«Разложение белого света на спектр»
Цель опыта: сформировать у учащихся единое, целое представление о физической природе явления дисперсии света, рассмотреть условия возникновения радуги.
Задачи:
Оснащение опыта:
Практическое назначение опыта:
способствует развитию
навыков работы с оборудованием – получать и изучать дисперсионный спектр,
способствует формированию целостной картины мира, совершенствовать навыки
высказывать собственное мнение, публичного выступления, работать с
аудиторией, применять полученные теоретические знания при объяснении природных
явлений.
Опыт является составной частью работы по самосовершенствованию компетентностей
ученика, т.к. учащиеся в своем предметном «Портфолио» отметят свои успехи и
достижения, смогут проанализировать свою деятельность на открытом мероприятии.
Понятийный аппарат: преломление, скорость света, дисперсия, спектр, порядок цветов в спектре, монохроматическая волна.
Проведение опыта
Расположить призму так, чтобы на одну из её граней падал луч света. Для достижения направленного пучка света от лампы накаливания между призмой и лампой устанавливают ширму с узкой щелью. В результате прохождения луча через призму он испытывает ряд преломлений, т.к. проходит через среды с разной оптической плотностью. А на выходе из призмы луч разлагается на спектр, который отслеживаем на экране, установленном за призмой. Для удобства проведения опыта в лаборатории должно быть темно.
Если на пути луча между призмой и узкой щелью поместим светофильтр, например красный, то разложения красного света не увидим, т.к. свет монохромный
Мотивация познавательной деятельности
– Как можно объяснить удивительное многообразие красок в природе? Я хочу предложить послушать вам стихотворение Ф.И.Тютчева:
Как неожиданно и ярко,
На влажной неба синеве,
Воздушная воздвиглась арка
В своем минутном торжестве!
Один конец в леса вонзила,
Она полнеба обхватила
И в высоте изнемогла.
– Какое явление описано в этих поэтических строках? (Радуга)
– До 1666г считалось, что цвет – это свойство самого тела. С давних времен наблюдалось разделение цвета радуги, и было известно, что образование радуги связано с освещенностью дождевых капель. Существует поверье: кто пройдёт под радугой, тот на всю жизнь останется счастливым. Сказка это или быль? Можно ли пройти под радугой и стать СЧАСТЛИВЫМ? Разобраться в этом поможет одно удивительное физическое явление, благодаря которому можно видеть наш окружающий мир цветным. Почему мы можем видеть красивыми цветы, удивительные краски картин художников: Почему мир дарит нам целую гамму различных по красоте и неповторимости пейзажей? Это явление – дисперсия. Давайте попробуем сформулировать название опыта. (Учащиеся предлагают различные варианты названий)
Цель: изучить дисперсию и выяснить причины появления радуги.
Задачи:
Гипотеза: если знать явление дисперсии, то можно объяснить природные явления и получить радугу в лабораторных условиях. Любое исследование предполагает выбор объекта и предмета исследования
Объект исследования: световые волны, дисперсия
Предмет исследования: радуга
Дисперсия – звучит прекрасно слово,
Прекрасно и явление само,
Оно нам с детства близко и знакомо,
Мы наблюдали сотни раз его!
Опыты И.Ньютона по дисперсии
Явление дисперсии было открыто И.Ньютоном и считается одной из важнейших его
заслуг. "Он исследовал различие световых лучей и появляющиеся при этом
различные свойства цветов, чего раньше никто не подозревал". Около 300 лет
назад Исаак Ньютон пропустил солнечные лучи через призму. Недаром на его надгробном
памятнике, поставленном в 1731 году и украшенном фигурами юношей, которые
держат в руках эмблемы его главнейших открытий, одна фигура держит призму, а в
надписи на памятнике есть слова: «Он исследовал различие световых лучей и
проявляющиеся при этом различные свойства, чего ранее никто не подозревал». Он
открыл, что белый свет – это «чудесная смесь цветов».
Итак, что же сделал Ньютон? Повторим опыт Ньютона.
Если внимательно присмотреться к прохождению света через треугольную призму, то
можно увидеть, что разложение белого света начинается сразу же, как только свет
переходит из воздуха в стекло. В описанных опытах использовались призма,
изготовленная из стекла. Вместо стекла можно взять и другие прозрачные для
света материалы. Замечательно, что этот опыт пережил столетия, и его методика
без существенных изменений используется до сих пор.
Демонстрируется непрерывный спектр белого света
Прежде чем разобраться в сути этого явления, давайте вспомним о преломлении световых волн.
– В чем состоит особенность прохождения светового пучка через призму?
1 вывод Ньютона
: свет имеет сложную структуру, т.е. белый свет
содержит электромагнитные волны разных частот.
2 вывод Ньютона
: свет различного цвета отличается степенью
преломляемости, т.е. характеризуется разными показателями преломления в данной
среде.
Наиболее сильно преломляются фиолетовые лучи, меньше всего – красные.
Совокупность цветных изображений щели на экране и есть непрерывный спектр
.
Исаак Ньютон условно выделил в спектре семь основных цветов:
Порядок расположения цветов просто запомнить по аббревиатуре слов: каждый
охотник желает знать, где сидит фазан
. Резкой границы между цветами
нет.
Различным цветам соответствуют волны различной длины. Никакой определенной
длины волны белому свету не соответствует. Тем не менее, границы диапазонов
белого света и составляющих его цветов принято характеризовать их длинами волн
в вакууме. Таким образом, белый свет – это сложный свет, совокупность волн
длинами от 380 до 760 нм.
Выводы из опытов:
Вывод: при прохождении света через вещество, имеющее преломляющий угол, происходит разложение света на цвета.
Вывод:
В веществе скорость распространения коротковолнового
излучения меньше, чем длинноволнового. Значит показатель преломления для
фиолетового света больше, чем для красного.
Механизм дисперсии объясняется следующим образом. Электромагнитная волна
возбуждает в веществе вынужденные колебания электронов в атомах и молекулах.
Так как дисперсия возникает вследствие взаимодействия частиц вещества со
световой волной, то это явление связано с поглощением света – превращением
энергии электромагнитной волны во внутреннюю энергию вещества.
Разделение цветов в пучке белого света происходит из-за того, что волны разной
длиной волны преломляются или рассеиваются веществом по-разному. Радуга –
разделение света при преломлении капельками воды.
Максимальное поглощение энергии возникает при резонансе, когда частота v
падающего света равна v
колебаний атомов. Ещё раз обращаем внимание
учащихся на то, что при переходе волны из одной среды в другую
изменяются и скорость, и длина волны, а частота колебаний остается неизменной
.
Игра «Закончи предложение»
Вопросы для обсуждения:
Продолжим изучение световых явлений на примере радуги
Радугу «творят» водяные капли: в небе – дождинки, на поливаемом асфальте – капельки, брызги от водяной струи. Однако не все знают, как именно преломление света на капельках дождя приводит к возникновению на небосводе гигантской многоцветной дуги. Яркая радуга, которая возникает после дождей или в брызгах водопада – это первичная радуга. Цветные полосы сильно отличаются по яркости, но порядок всегда одинаков: внутри дуги всегда находится фиолетовая полоса, которая переходит в синюю, зелёную, жёлтую, оранжевую и красную – с внешней стороны радуги. Выше первой, в небе, возникает вторая менее яркая дуга, в которой цветовые полосы расположены в обратном порядке.
Сотни тысяч физических экспериментов было поставлено за тысячелетнюю историю науки. Непросто отобрать несколько «самых-самых»
Изменить размер текста: A A
Среди физиков США и Западной Европы был проведен опрос. Исследователи Роберт Криз и Стони Бук просили их назвать самые красивые за всю историю физические эксперименты. Об экспериментах, вошедших в первую десятку по результатам опроса Криза и Бука, рассказал научный сотрудник Лаборатории нейтринной астрофизики высоких энергий, кандидат физико-математических наук Игорь Сокальский. 1. Эксперимент Эратосфена Киренского Один из самых древних известных физических экспериментов, в результате которого был измерен радиус Земли, был проведен в III веке до нашей эры библиотекарем знаменитой Александрийской библиотеки Эрастофеном Киренским. Схема эксперимента проста. В полдень, в день летнего солнцестояния, в городе Сиене (ныне Асуан ) Солнце находилось в зените и предметы не отбрасывали тени. В тот же день и в то же время в городе Александрии , находившемся в 800 километрах от Сиена, Солнце отклонялось от зенита примерно на 7°. Это составляет около 1/50 полного круга (360°), откуда получается, что окружность Земли равна 40 000 километров, а радиус 6300 километров. Почти невероятным представляется то, что измеренный столь простым методом радиус Земли оказался всего на 5% меньше значения, полученного самыми точными современными методами, сообщает сайт . 2. Эксперимент Галилео Галилея В XVII веке господствовала точка зрения Аристотеля, который учил, что скорость падения тела зависит от его массы. Чем тяжелее тело, тем быстрее оно падает. Наблюдения, которые каждый из нас может проделать в повседневной жизни, казалось бы, подтверждают это. Попробуйте одновременно выпустить из рук легкую зубочистку и тяжелый камень. Камень быстрее коснется земли. Подобные наблюдения привели Аристотеля к выводу о фундаментальном свойстве силы, с которой Земля притягивает другие тела. В действительности на скорость падения влияет не только сила притяжения, но и сила сопротивления воздуха. Соотношение этих сил для легких предметов и для тяжелых различно, что и приводит к наблюдаемому эффекту.
Итальянец Галилео Галилей усомнился в правильности выводов Аристотеля и нашел способ их проверить. Для этого он сбрасывал с Пизанской башни в один и тот же момент пушечное ядро и значительно более легкую мушкетную пулю. Оба тела имели примерно одинаковую обтекаемую форму, поэтому и для ядра, и для пули силы сопротивления воздуха были пренебрежимо малы по сравнению с силами притяжения. Галилей выяснил, что оба предмета достигают земли в один и тот же момент, то есть скорость их падения одинакова.
Результаты, полученные Галилеем , - следствие закона всемирного тяготения и закона, в соответствии с которым ускорение, испытываемое телом, прямо пропорционально силе, действующей на него, и обратно пропорционально массе. 3. Другой эксперимент Галилео Галилея Галилей замерял расстояние, которое шары, катящиеся по наклонной доске, преодолевали за равные промежутки времени, измеренный автором опыта по водяным часам. Ученый выяснил, что если время увеличить в два раза, то шары прокатятся в четыре раза дальше. Эта квадратичная зависимость означала, что шары под действием силы тяжести движутся ускоренно, что противоречило принимаемому на веру в течение 2000 лет утверждению Аристотеля о том, что тела, на которые действует сила, движутся с постоянной скоростью, тогда как если сила не приложена к телу, то оно покоится. Результаты этого эксперимента Галилея, как и результаты его эксперимента с Пизанской башней, в дальнейшем послужили основой для формулирования законов классической механики. 4. Эксперимент Генри Кавендиша После того как Исаак Ньютон сформулировал закон всемирного тяготения: сила притяжения между двумя телами с массами Мит, удаленных друг от друга на расстояние r, равна F=γ(mM/r2), оставалось определить значение гравитационной постоянной γ- Для этого нужно было измерить силу притяжения между двумя телами с известными массами. Сделать это не так просто, потому что сила притяжения очень мала. Мы ощущаем силу притяжения Земли. Но почувствовать притяжение даже очень большой оказавшейся поблизости горы невозможно, поскольку оно очень слабо.
Нужен был очень тонкий и чувствительный метод. Его придумал и применил в 1798 году соотечественник Ньютона Генри Кавендиш. Он использовал крутильные весы - коромысло с двумя шариками, подвешенное на очень тонком шнурке. Кавендиш измерял смещение коромысла (поворот) при приближении к шарикам весов других шаров большей массы. Для увеличения чувствительности смещение определялось по световым зайчикам, отраженным от зеркал, закрепленных на шарах коромысла. В результате этого эксперимента Кавендишу удалось довольно точно определить значение гравитационной константы и впервые вычислить массу Земли.
5. Эксперимент Жана Бернара Фуко
Французский физик Жан Бернар Леон Фуко в 1851 году экспериментально доказал вращение Земли вокруг своей оси с помощью 67-метрового маятника, подвешенного к вершине купола парижского Пантеона. Плоскость качания маятника сохраняет неизменное положение по отношению к звездам. Наблюдатель же, находящийся на Земле и вращающийся вместе с ней, видит, что плоскость вращения медленно поворачивается в сторону, противоположную направлению вращения Земли. 6. Эксперимент Исаака Ньютона В 1672 году Исаак Ньютон проделал простой эксперимент, который описан во всех школьных учебниках. Затворив ставни, он проделал в них небольшое отверстие, сквозь которое проходил солнечный луч. На пути луча была поставлена призма, а за призмой - экран. На экране Ньютон наблюдал «радугу»: белый солнечный луч, пройдя через призму, превратился в несколько цветных лучей - от фиолетового до красного. Это явление называется дисперсией света.
Сэр Исаак был не первым, наблюдавшим это явление. Уже в начале нашей эры было известно, что большие монокристаллы природного происхождения обладают свойством разлагать свет на цвета. Первые исследования дисперсии света в опытах со стеклянной треугольной призмой еще до Ньютона выполнили англичанин Хариот и чешский естествоиспытатель Марци.
Однако до Ньютона подобные наблюдения не подвергались серьезному анализу, а делавшиеся на их основе выводы не перепроверялись дополнительными экспериментами. И Хариот, и Марци оставались последователями Аристотеля, который утверждал, что различие в цвете определяется различием в количестве темноты, «примешиваемой» к белому свету. Фиолетовый цвет, по Аристотелю, возникает при наибольшем добавлении темноты к свету, а красный - при наименьшем. Ньютон же проделал дополнительные опыты со скрещенными призмами, когда свет, пропущенный через одну призму, проходит затем через другую. На основании совокупности проделанных опытов он сделал вывод о том, что «никакого цвета не возникает из белизны и черноты, смешанных вместе, кроме промежуточных темных; количество света не меняет вида цвета». Он показал, что белый свет нужно рассматривать как составной. Основными же являются цвета от фиолетового до красного. Этот эксперимент Ньютона служит замечательным примером того, как разные люди, наблюдая одно и то же явление, интерпретируют его по-разному и только те, кто подвергает сомнению свою интерпретацию и ставит дополнительные опыты, приходят к правильным выводам. 7. Эксперимент Томаса Юнга До начала XIX века преобладали представления о корпускулярной природе света. Свет считали состоящим из отдельных частиц - корпускул. Хотя явления дифракции и интерференции света наблюдал еще Ньютон («кольца Ньютона»), общепринятая точка зрения оставалась корпускулярной. Рассматривая волны на поверхности воды от двух брошенных камней, можно заметить, как, накладываясь друг на друга, волны могут интерферировать, то есть взаимогасить либо взаимоусиливать друг друга. Основываясь на этом, английский физик и врач Томас Юнг проделал в 1801 году опыты с лучом света, который проходил через два отверстия в непрозрачном экране, образуя, таким образом, два независимых источника света, аналогичных двум брошенным в воду камням. В результате он наблюдал интерференционную картину, состоящую из чередующихся темных и белых полос, которая не могла бы образоваться, если бы свет состоял из корпускул. Темные полосы соответствовали зонам, где световые волны от двух щелей гасят друг друга. Светлые полосы возникали там, где световые волны взаимоусиливались. Таким образом была доказана волновая природа света.
8. Эксперимент Клауса Йонссона
Немецкий физик Клаус Йонссон провел в 1961 году эксперимент, подобный эксперименту Томаса Юнга по интерференции света. Разница состояла в том, что вместо лучей света Йонссон использовал пучки электронов. Он получил интерференционную картину, аналогичную той, что Юнг наблюдал для световых волн. Это подтвердило правильность положений квантовой механики о смешанной корпускулярно-волновой природе элементарных частиц. 9. Эксперимент Роберта Милликена Представление о том, что электрический заряд любого тела дискретен (то есть состоит из большего или меньшего набора элементарных зарядов, которые уже не подвержены дроблению), возникло еще в начале XIX века и поддерживалось такими известными физиками, как М.Фарадей и Г.Гельмгольц . В теорию был введен термин "электрон", обозначавший некую частицу - носитель элементарного электрического заряда. Этот термин, однако, был в то время чисто формальным, поскольку ни сама частица, ни связанный с ней элементарный электрический заряд не были обнаружены экспериментально. В 1895 году К.Рентген во время экспериментов с разрядной трубкой обнаружил, что ее анод под действием летящих из катода лучей способен излучать свои, Х-лучи, или лучи Рентгена. В том же году французский физик Ж.Перрен экспериментально доказал, что катодные лучи - это поток отрицательно заряженных частиц. Но, несмотря на колоссальный экспериментальный материал, электрон оставался гипотетической частицей, поскольку не было ни одного опыта, в котором участвовали бы отдельные электроны. Американский физик Роберт Милликен разработал метод, ставший классическим примером изящного физического эксперимента. Милликену удалось изолировать в пространстве несколько заряженных капелек воды между пластинами конденсатора. Освещая рентгеновскими лучами, можно было слегка ионизировать воздух между пластинами и изменять заряд капель. При включенном поле между пластинами капелька медленно двигалась вверх под действием электрического притяжения. При выключенном поле она опускалась под действием гравитации. Включая и выключая поле, можно было изучать каждую из взвешенных между пластинами капелек в течение 45 секунд, после чего они испарялись. К 1909 году удалось определить, что заряд любой капельки всегда был целым кратным фундаментальной величине е (заряд электрона). Это было убедительным доказательством того, что электроны представляли собой частицы с одинаковыми зарядом и массой. Заменив капельки воды капельками масла, Милликен получил возможность увеличить продолжительность наблюдений до 4,5 часа и в 1913 году, исключив один за другим возможные источники погрешностей, опубликовал первое измеренное значение заряда электрона: е = (4,774 ± 0,009)х10-10 электростатических единиц. 10. Эксперимент Эрнста Резерфорда К началу XX века стало понятно, что атомы состоят из отрицательно заряженных электронов и какого-то положительного заряда, благодаря которому атом остается в целом нейтральным. Однако предположений о том, как выглядит эта «положительно-отрицательная» система, было слишком много, в то время как экспериментальных данных, которые позволили бы сделать выбор в пользу той или иной модели, явно недоставало. Большинство физиков приняли модель Дж.Дж.Томсона : атом как равномерно заряженный положительный шар диаметром примерно 108 см с плавающими внутри отрицательными электронами. В 1909 году Эрнст Резерфорд (ему помогали Ганс Гейгер и Эрнст Марсден) поставил эксперимент, чтобы понять действительную структуру атома. В этом эксперименте тяжелые положительно заряженные а-частицы, движущиеся со скоростью 20 км/с, проходили через тонкую золотую фольгу и рассеивались на атомах золота, отклоняясь от первоначального направления движения. Чтобы определить степень отклонения, Гейгер и Марсден должны были с помощью микроскопа наблюдать вспышки на пластине сцинтиллятора, возникавшие там, где в пластину попадала а-частица. За два года было сосчитано около миллиона вспышек и доказано, что примерно одна частица на 8000 в результате рассеяния изменяет направление движения более чем на 90° (то есть поворачивает назад). Такого никак не могло происходить в "рыхлом" атоме Томсона. Результаты однозначно свидетельствовали в пользу так называемой планетарной модели атома - массивное крохотное ядро размерами примерно 10-13 см и электроны, вращающиеся вокруг этого ядра на расстоянии около 10-8 см. Современные физические эксперименты значительно сложнее экспериментов прошлого. В одних приборы размещают на площадях в десятки тысяч квадратных километров, в других заполняют объем порядка кубического километра. А третьи вообще скоро будут проводить на других планетах. Кстати, а вы знаете,
Статьи по теме: | |
Отделы водорослей К какому царству относятся сине зеленые водоросли
Среди существующих ныне организмов встречаются такие, о принадлежности... Что такое система вообще
В силу того, что системный анализ направлен на решение любых проблем... Курс выживания в дикой природе Подмосковья: как это было
В мае 2012 года в средствах массовой информации появилась информация о... |