Выбор читателей
Популярные статьи
На этом уроке мы рассмотрим основные тригонометрические функции, их свойства и графики , а также перечислим основные типы тригонометрических уравнений и систем . Кроме этого, укажем общие решения простейших тригонометрических уравнений и их частные случаи .
Данный урок поможет Вам подготовиться к одному из типов задания В5 и С1 .
Подготовка к ЕГЭ по математике
Эксперимент
Урок 10. Тригонометрические функции. Тригонометрические уравнения и их системы.
Теория
Конспект урока
Мы с вами уже многократно применяли термин «тригонометрическая функция». Еще на первом уроке этой темы мы определили их с помощью прямоугольного треугольника и единичной тригонометрической окружности. Используя такие способы задания тригонометрических функций, мы уже можем сделать вывод, что для них одному значению аргумента (или угла) соответствует строго одно значение функции, т.е. мы вправе называть синус, косинус, тангенс и котангенс именно функциями.
На этом уроке самое время попробовать абстрагироваться от рассмотренных ранее способов вычисления значений тригонометрических функций. Сегодня мы перейдем к привычному алгебраическому подходу работы с функциями, мы рассмотрим их свойства и изобразим графики.
Что касается свойств тригонометрических функций, то особое внимание следует обратить на:
Область определения и область значений, т.к. для синуса и косинуса есть ограничения по области значений, а для тангенса и котангенса ограничения по области определения;
Периодичность всех тригонометрических функций, т.к. мы уже отмечали наличие наименьшего ненулевого аргумента, добавление которого не меняет значение функции. Такой аргумент называют периодом функции и обозначают буквой . Для синуса/косинуса и тангенса/котангенса эти периоды различны.
Рассмотрим функцию:
1) Область определения ;
2) Область значений ;
3) Функция нечетная ;
Построим график функции . При этом удобно начинать построение с изображения области, которая ограничивает график сверху числом 1 и снизу числом , что связано с областью значений функции. Кроме того, для построения полезно помнить значения синусов нескольких основных табличных углов, например, что Это позволит построить первую полную «волну» графика и потом перерисовывать ее вправо и влево, пользуясь тем, что картинка будет повторяться со смещением на период, т.е. на .
Теперь рассмотрим функцию:
Основные свойства этой функции:
1) Область определения ;
2) Область значений ;
3) Функция четная Из этого следует симметричность графика функции относительно оси ординат;
4) Функция не является монотонной на всей своей области определения;
Построим график функции . Как и при построении синуса удобно начинать с изображения области, которая ограничивает график сверху числом 1 и снизу числом , что связано с областью значений функции. Также нанесем на график координаты нескольких точек, для чего необходимо помнить значения косинусов нескольких основных табличных углов, например, что С помощью этих точек мы можем построить первую полную «волну» графика и потом перерисовывать ее вправо и влево, пользуясь тем, что картинка будет повторяться со смещением на период, т.е. на .
Перейдем к функции:
Основные свойства этой функции:
1) Область определения кроме , где . Мы уже указывали в предыдущих уроках, что не существует. Это утверждение можно обобщить, учитывая период тангенса;
2) Область значений , т.е. значения тангенса не ограничены;
3) Функция нечетная ;
4) Функция монотонно возрастает в пределах своих так называемых веток тангенса, которые мы сейчас увидим на рисунке;
5) Функция периодична с периодом
Построим график функции . При этом удобно начинать построение с изображения вертикальных асимптот графика в точках, которые не входят в область определения, т.е. и т.д. Далее изображаем ветки тангенса внутри каждой из образованных асимптотами полосок, прижимая их к левой асимптоте и к правой. При этом не забываем, что каждая ветка монотонно возрастает. Все ветки изображаем одинаково, т.к. функция имеет период, равный . Это видно по тому, что каждая ветка получается смещением соседней на вдоль оси абсцисс.
И завершаем рассмотрением функции:
Основные свойства этой функции:
1) Область определения кроме , где . По таблице значений тригонометрических функций мы уже знаем, что не существует. Это утверждение можно обобщить, учитывая период котангенса;
2) Область значений , т.е. значения котангенса не ограничены;
3) Функция нечетная ;
4) Функция монотонно убывает в пределах своих веток, которые похожи на ветки тангенса;
5) Функция периодична с периодом
Построим график функции . При этом, как и для тангенса, удобно начинать построение с изображения вертикальных асимптот графика в точках, которые не входят в область определения, т.е. и т.д. Далее изображаем ветки котангенса внутри каждой из образованных асимптотами полосок, прижимая их к левой асимптоте и к правой. В этом случае учитываем, что каждая ветка монотонно убывает. Все ветки аналогично тангенсу изображаем одинаково, т.к. функция имеет период, равный .
Отдельно следует отметить тот факт, что у тригонометрических функций со сложным аргументом может быть нестандартный период. Речь идет о функциях вида:
У них период равен . И о функциях:
У них период равен .
Как видим, для вычисления нового периода стандартный период просто делится на множитель при аргументе. От остальных видоизменений функции он не зависит.
Подробнее разобраться и понять, откуда берутся эти формулы, вы сможете в уроке про построение и преобразование графиков функций.
Мы подошли к одной из самых главных частей темы «Тригонометрия», которую мы посвятим решению тригонометрических уравнений. Умение решать такие уравнения важно, например, при описании колебательных процессов в физике. Представим, что вы на спортивной машине проехали несколько кругов на картинге, определить сколько времени вы уже участвуете в гонке в зависимости от положения машины на трассе поможет решение тригонометрического уравнения.
Запишем простейшее тригонометрическое уравнение:
Решением такого уравнения являются аргументы, синус которых равен . Но мы уже знаем, что из-за периодичности синуса таких аргументов существует бесконечное множество. Таким образом, решением этого уравнения будут и т.п. То же самое относится и к решению любого другого простейшего тригонометрического уравнения, их будет бесконечное количество.
Тригонометрические уравнения делятся на несколько основных типов. Отдельно следует остановиться на простейших, т.к. все остальные к ним сводятся. Таких уравнений четыре (по количеству основных тригонометрических функций). Для них известны общие решения, их необходимо запомнить.
Простейшие тригонометрические уравнения и их общие решения выглядят следующим образом:
Обратите внимание, что на значения синуса и косинуса необходимо учитывать известные нам ограничения. Если, например, , то уравнение не имеет решений и применять указанную формулу не следует.
Кроме того, указанные формулы корней содержат параметр в виде произвольного целого числа . В школьной программе это единственный случай, когда решение уравнения без параметра содержит в себе параметр. Это произвольное целое число показывает, что можно выписать бесконечное количество корней любого из указанных уравнений просто подставляя вместо по очереди все целые числа.
Ознакомиться с подробным получением указанных формул вы можете, повторив главу «Тригонометрические уравнения» в программе алгебры 10 класса.
Отдельно необходимо обратить внимание на решение частных случаев простейших уравнений с синусом и косинусом. Эти уравнения имеют вид:
К ним не следует применять формулы нахождения общих решений. Такие уравнения удобнее всего решаются с использованием тригонометрической окружности, что дает более простой результат, чем формулы общих решений.
Например, решением уравнения является . Попробуйте сами получить этот ответ и решить остальные указанные уравнения.
Кроме указанного наиболее часто встречающегося типа тригонометрических уравнений существуют еще несколько стандартных. Перечислим их с учетом тех, которые мы уже указали:
1) Простейшие , например, ;
2) Частные случаи простейших уравнений , например, ;
3) Уравнения со сложным аргументом
, например, ;
4) Уравнения, сводящиеся к простейшим путем вынесения общего множителя , например, ;
5) Уравнения, сводящиеся к простейшим путем преобразования тригонометрических функций , например, ;
6) Уравнения, сводящиеся к простейшим с помощью замены , например, ;
7) Однородные уравнения , например, ;
8) Уравнения, которые решаются с использованием свойств функций
, например, . Пусть вас не пугает, что в этом уравнении две переменные, оно при этом решается;
А также уравнения, которые решаются с использованием различных методов.
Кроме решения тригонометрических уравнений необходимо уметь решать и их системы.
Наиболее часто встречаются системы следующих типов:
1) В которых одно из уравнений степенное
, например, ;
2) Системы из простейших тригонометрических уравнений
, например, .
На сегодняшнем уроке мы рассмотрели основные тригонометрические функции, их свойства и графики. А также познакомились с общими формулами решения простейших тригонометрических уравнений, указали основные типы таких уравнений и их систем.
В практической части урока мы разберем методы решения тригонометрических уравнений и их систем.
Вставка 1. Решение частных случаев простейших тригонометрических уравнений .
Как мы уже говорили в основной части урока частные случаи тригонометрических уравнений с синусом и косинусом вида:
имеют более простые решения, чем дают формулы общих решений.
Для этого используется тригонометрическая окружность. Разберем метод их решения на примере уравнения .
Изобразим на тригонометрической окружности точку, в которой значение косинуса равно нулю, оно же является координатой по оси абсцисс. Как видим, таких точек две. Наша задача указать чему равен угол, который соответствует этим точкам на окружности.
![]() |
Начинаем отсчет от положительного направления оси абсцисс (оси косинусов) и при откладывании угла попадаем в первую изображенную точку, т.е. одним из решений будет это значение угла. Но нас же еще устраивает угол, который соответствует второй точке. Как попасть в нее?
При решении многих математических задач , особенно тех, которые встречаются до 10 класса, порядок выполняемых действий, которые приведут к цели, определен однозначно. К таким задачам можно отнести, например, линейные и квадратные уравнения, линейные и квадратные неравенства, дробные уравнения и уравнения, которые сводятся к квадратным. Принцип успешного решения каждой из упомянутых задач заключается в следующем: надо установить, к какому типу относится решаемая задача, вспомнить необходимую последовательность действий, которые приведут к нужному результату, т.е. ответу, и выполнить эти действия.
Очевидно, что успех или неуспех в решении той или иной задачи зависит главным образом от того, насколько правильно определен тип решаемого уравнения, насколько правильно воспроизведена последовательность всех этапов его решения. Разумеется, при этом необходимо владеть навыками выполнения тождественных преобразований и вычислений.
Иная ситуация получается с тригонометрическими уравнениями. Установить факт того, что уравнение является тригонометрическим, совсем нетрудно. Сложности появляются при определении последовательности действий, которые бы привели к правильному ответу.
По внешнему виду уравнения порой бывает трудно определить его тип. А не зная типа уравнения, почти невозможно выбрать из нескольких десятков тригонометрических формул нужную.
Чтобы решить тригонометрическое уравнение, надо попытаться:
1. привести все функции входящие в уравнение к «одинаковым углам»;
2. привести уравнение к «одинаковым функциям»;
3. разложить левую часть уравнения на множители и т.п.
Рассмотрим основные методы решения тригонометрических уравнений.
I. Приведение к простейшим тригонометрическим уравнениям
Схема решения
Шаг 1. Выразить тригонометрическую функцию через известные компоненты.
Шаг 2. Найти аргумент функции по формулам:
cos x = a; x = ±arccos a + 2πn, n ЄZ.
sin x = a; x = (-1) n arcsin a + πn, n Є Z.
tg x = a; x = arctg a + πn, n Є Z.
ctg x = a; x = arcctg a + πn, n Є Z.
Шаг 3. Найти неизвестную переменную.
Пример.
2 cos(3x – π/4) = -√2.
Решение.
1) cos(3x – π/4) = -√2/2.
2) 3x – π/4 = ±(π – π/4) + 2πn, n Є Z;
3x – π/4 = ±3π/4 + 2πn, n Є Z.
3) 3x = ±3π/4 + π/4 + 2πn, n Є Z;
x = ±3π/12 + π/12 + 2πn/3, n Є Z;
x = ±π/4 + π/12 + 2πn/3, n Є Z.
Ответ: ±π/4 + π/12 + 2πn/3, n Є Z.
II. Замена переменной
Схема решения
Шаг 1. Привести уравнение к алгебраическому виду относительно одной из тригонометрических функций.
Шаг 2. Обозначить полученную функцию переменной t (если необходимо, ввести ограничения на t).
Шаг 3. Записать и решить полученное алгебраическое уравнение.
Шаг 4. Сделать обратную замену.
Шаг 5. Решить простейшее тригонометрическое уравнение.
Пример.
2cos 2 (x/2) – 5sin (x/2) – 5 = 0.
Решение.
1) 2(1 – sin 2 (x/2)) – 5sin (x/2) – 5 = 0;
2sin 2 (x/2) + 5sin (x/2) + 3 = 0.
2) Пусть sin (x/2) = t, где |t| ≤ 1.
3) 2t 2 + 5t + 3 = 0;
t = 1 или е = -3/2, не удовлетворяет условию |t| ≤ 1.
4) sin (x/2) = 1.
5) x/2 = π/2 + 2πn, n Є Z;
x = π + 4πn, n Є Z.
Ответ: x = π + 4πn, n Є Z.
III. Метод понижения порядка уравнения
Схема решения
Шаг 1. Заменить данное уравнение линейным, используя для этого формулы понижения степени:
sin 2 x = 1/2 · (1 – cos 2x);
cos 2 x = 1/2 · (1 + cos 2x);
tg 2 x = (1 – cos 2x) / (1 + cos 2x).
Шаг 2. Решить полученное уравнение с помощью методов I и II.
Пример.
cos 2x + cos 2 x = 5/4.
Решение.
1) cos 2x + 1/2 · (1 + cos 2x) = 5/4.
2) cos 2x + 1/2 + 1/2 · cos 2x = 5/4;
3/2 · cos 2x = 3/4;
2x = ±π/3 + 2πn, n Є Z;
x = ±π/6 + πn, n Є Z.
Ответ: x = ±π/6 + πn, n Є Z.
IV. Однородные уравнения
Схема решения
Шаг 1. Привести данное уравнение к виду
a) a sin x + b cos x = 0 (однородное уравнение первой степени)
или к виду
б) a sin 2 x + b sin x · cos x + c cos 2 x = 0 (однородное уравнение второй степени).
Шаг 2. Разделить обе части уравнения на
а) cos x ≠ 0;
б) cos 2 x ≠ 0;
и получить уравнение относительно tg x:
а) a tg x + b = 0;
б) a tg 2 x + b arctg x + c = 0.
Шаг 3. Решить уравнение известными способами.
Пример.
5sin 2 x + 3sin x · cos x – 4 = 0.
Решение.
1) 5sin 2 x + 3sin x · cos x – 4(sin 2 x + cos 2 x) = 0;
5sin 2 x + 3sin x · cos x – 4sin² x – 4cos 2 x = 0;
sin 2 x + 3sin x · cos x – 4cos 2 x = 0/cos 2 x ≠ 0.
2) tg 2 x + 3tg x – 4 = 0.
3) Пусть tg x = t, тогда
t 2 + 3t – 4 = 0;
t = 1 или t = -4, значит
tg x = 1 или tg x = -4.
Из первого уравнения x = π/4 + πn, n Є Z; из второго уравнения x = -arctg 4 + πk, k Є Z.
Ответ: x = π/4 + πn, n Є Z; x = -arctg 4 + πk, k Є Z.
V. Метод преобразования уравнения с помощью тригонометрических формул
Схема решения
Шаг 1. Используя всевозможные тригонометрические формулы, привести данное уравнение к уравнению, решаемому методами I, II, III, IV.
Шаг 2. Решить полученное уравнение известными методами.
Пример.
sin x + sin 2x + sin 3x = 0.
Решение.
1) (sin x + sin 3x) + sin 2x = 0;
2sin 2x · cos x + sin 2x = 0.
2) sin 2x · (2cos x + 1) = 0;
sin 2x = 0 или 2cos x + 1 = 0;
Из первого уравнения 2x = π/2 + πn, n Є Z; из второго уравнения cos x = -1/2.
Имеем х = π/4 + πn/2, n Є Z; из второго уравнения x = ±(π – π/3) + 2πk, k Є Z.
В итоге х = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.
Ответ: х = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.
Умения и навыки решать тригонометрические уравнения являются очень важными, их развитие требует значительных усилий, как со стороны ученика, так и со стороны учителя.
С решением тригонометрических уравнений связаны многие задачи стереометрии, физики, и др. Процесс решения таких задач как бы заключает в себе многие знания и умения, которые приобретаются при изучении элементов тригонометрии.
Тригонометрические уравнения занимают важное место в процессе обучения математики и развития личности в целом.
Остались вопросы? Не знаете, как решать тригонометрические уравнения?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!
сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.
Тригонометрические уравнения - тема не самая простая. Уж больно они разнообразные.) Например, такие:
sin 2 x + cos3x = ctg5x
sin(5x+π /4) = ctg(2x-π /3)
sinx + cos2x + tg3x = ctg4x
И тому подобное...
Но у этих (и всех остальных) тригонометрических монстров есть два общих и обязательных признака. Первый - вы не поверите - в уравнениях присутствуют тригонометрические функции.) Второй: все выражения с иксом находятся внутри этих самых функций. И только там! Если икс появится где-нибудь снаружи, например, sin2x + 3x = 3, это уже будет уравнение смешанного типа. Такие уравнения требуют индивидуального подхода. Здесь мы их рассматривать не будем.
Злые уравнения в этом уроке мы тоже решать не будем.) Здесь мы будем разбираться с самыми простыми тригонометрическими уравнениями. Почему? Да потому, что решение любых тригонометрических уравнений состоит из двух этапов. На первом этапе злое уравнение путём самых различных преобразований сводится к простому. На втором - решается это самое простое уравнение. Иначе - никак.
Так что, если на втором этапе у вас проблемы - первый этап особого смысла не имеет.)
sinx = а
cosx = а
tgx = а
ctgx = а
Здесь а обозначает любое число. Любое.
Кстати, внутри функции может находиться не чистый икс, а какое-то выражение, типа:
cos(3x+π /3) = 1/2
и тому подобное. Это усложняет жизнь, но на методе решения тригонометрического уравнения никак не сказывается.
Тригонометрические уравнения можно решать двумя путями. Первый путь: с использованием логики и тригонометрического круга. Этот путь мы рассмотрим здесь. Второй путь - с использованием памяти и формул - рассмотрим в следующем уроке.
Первый путь понятен, надёжен, и его трудно забыть.) Он хорош для решения и тригонометрических уравнений, и неравенств, и всяких хитрых нестандартных примеров. Логика сильнее памяти!)
Включаем элементарную логику и умение пользоваться тригонометрическим кругом. Не умеете!? Однако... Трудно же вам в тригонометрии придётся...) Но не беда. Загляните в уроки "Тригонометрический круг...... Что это такое?" и "Отсчёт углов на тригонометрическом круге". Там всё просто. В отличие от учебников...)
Ах, вы в курсе!? И даже освоили "Практическую работу с тригонометрическим кругом" !? Примите поздравления. Эта тема будет вам близка и понятна.) Что особо радует, тригонометрическому кругу безразлично, какое уравнение вы решаете. Синус, косинус, тангенс, котангенс - ему всё едино. Принцип решения один.
Вот и берём любое элементарное тригонометрическое уравнение. Хотя бы это:
cosx = 0,5
Надо найти икс. Если говорить человеческим языком, нужно найти угол (икс), косинус которого равен 0,5.
Как мы ранее использовали круг? Мы рисовали на нём угол. В градусах или радианах. И сразу видели тригонометрические функции этого угла. Сейчас поступим наоборот. Нарисуем на круге косинус, равный 0,5 и сразу увидим угол. Останется только записать ответ.) Да-да!
Рисуем круг и отмечаем косинус, равный 0,5. На оси косинусов, разумеется. Вот так:
Теперь нарисуем угол, который даёт нам этот косинус. Наведите курсор мышки на рисунок (или коснитесь картинки на планшете), и увидите этот самый угол х.
Косинус какого угла равен 0,5?
х = π /3
cos60° = cos(π /3 ) = 0,5
Кое-кто скептически хмыкнет, да... Мол, стоило ли круг городить, когда и так всё ясно... Можно, конечно, хмыкать...) Но дело в том, что это - ошибочный ответ. Вернее, недостаточный. Знатоки круга понимают, что здесь ещё целая куча углов, которые тоже дают косинус, равный 0,5.
Если провернуть подвижную сторону ОА на полный оборот , точка А попадёт в исходное положение. С тем же косинусом, равным 0,5. Т.е. угол изменится на 360° или 2π радиан, а косинус - нет. Новый угол 60° + 360° = 420° тоже будет решением нашего уравнения, т.к.
Таких полных оборотов можно накрутить бесконечное множество... И все эти новые углы будут решениями нашего тригонометрического уравнения. И их все надо как-то записать в ответ. Все. Иначе решение не считается, да...)
Математика умеет это делать просто и элегантно. В одном кратком ответе записывать бесконечное множество решений. Вот как это выглядит для нашего уравнения:
х = π /3 + 2π n, n ∈ Z
Расшифрую. Всё-таки писать осмысленно приятнее, чем тупо рисовать какие-то загадочные буковки, правда?)
π /3 - это тот самый угол, который мы увидели на круге и определили по таблице косинусов.
2π - это один полный оборот в радианах.
n - это количество полных, т.е. целых оборотов. Понятно, что n может быть равно 0, ±1, ±2, ±3.... и так далее. Что и указано краткой записью:
n ∈ Z
n принадлежит (∈ ) множеству целых чисел (Z ). Кстати, вместо буквы n вполне могут употребляться буквы k, m, t и т.д.
Эта запись означает, что вы можете взять любое целое n . Хоть -3, хоть 0, хоть +55. Какое хотите. Если подставите это число в запись ответа, получите конкретный угол, который обязательно будет решением нашего сурового уравнения.)
Или, другими словами, х = π /3 - это единственный корень из бесконечного множества. Чтобы получить все остальные корни, достаточно к π /3 прибавить любое количество полных оборотов (n ) в радианах. Т.е. 2π n радиан.
Всё? Нет. Я специально удовольствие растягиваю. Чтобы запомнилось получше.) Мы получили только часть ответов к нашему уравнению. Эту первую часть решения я запишу вот как:
х 1 = π /3 + 2π n, n ∈ Z
х 1 - не один корень, это целая серия корней, записанная в краткой форме.
Но есть ещё углы, которые тоже дают косинус, равный 0,5!
Вернёмся к нашей картинке, по которой записывали ответ. Вот она:
Наводим мышку на картинку и видим ещё один угол, который тоже даёт косинус 0,5. Как вы думаете, чему он равен? Треугольнички одинаковые... Да! Он равен углу х , только отложен в отрицательном направлении. Это угол -х. Но икс-то мы уже вычислили. π /3 или 60°. Стало быть, можно смело записать:
х 2 = - π /3
Ну и, разумеется, добавляем все углы, которые получаются через полные обороты:
х 2 = - π /3 + 2π n, n ∈ Z
Вот теперь всё.) По тригонометрическому кругу мы увидели (кто понимает, конечно)) все углы, дающие косинус, равный 0,5. И записали эти углы в краткой математической форме. В ответе получились две бесконечные серии корней:
х 1 = π /3 + 2π n, n ∈ Z
х 2 = - π /3 + 2π n, n ∈ Z
Это правильный ответ.
Надеюсь, общий принцип решения тригонометрических уравнений с помощью круга понятен. Отмечаем на круге косинус (синус, тангенс, котангенс) из заданного уравнения, рисуем соответствующие ему углы и записываем ответ. Конечно, нужно сообразить, что за углы мы увидели на круге. Иногда это не так очевидно. Ну так я и говорил, что здесь логика требуется.)
Для примера разберём ещё одно тригонометрическое уравнение:
Прошу учесть, что число 0,5 - это не единственно возможное число в уравнениях!) Просто мне его писать удобнее, чем корни и дроби.
Работаем по общему принципу. Рисуем круг, отмечаем (на оси синусов, разумеется!) 0,5. Рисуем сразу все углы, соответствующие этому синусу. Получим вот такую картину:
Сначала разбираемся с углом х в первой четверти. Вспоминаем таблицу синусов и определяем величину этого угла. Дело нехитрое:
х = π /6
Вспоминаем про полные обороты и, с чистой совестью, записываем первую серию ответов:
х 1 = π /6 + 2π n, n ∈ Z
Половина дела сделана. А вот теперь надо определить второй угол... Это похитрее, чем в косинусах, да... Но логика нас спасёт! Как определить второй угол через х? Да легко! Треугольнички на картинке одинаковые, и красный угол х равен углу х . Только отсчитан он от угла π в отрицательном направлении. Потому и красный.) А нам для ответа нужен угол, отсчитанный правильно, от положительной полуоси ОХ, т.е. от угла 0 градусов.
Наводим курсор на рисунок и всё видим. Первый угол я убрал, чтобы не усложнял картинку. Интересующий нас угол (нарисован зелёным) будет равен:
π - х
Икс мы знаем, это π /6 . Стало быть, второй угол будет:
π - π /6 = 5π /6
Снова вспоминаем про добавку полных оборотов и записываем вторую серию ответов:
х 2 = 5π /6 + 2π n, n ∈ Z
Вот и всё. Полноценный ответ состоит из двух серий корней:
х 1 = π /6 + 2π n, n ∈ Z
х 2 = 5π /6 + 2π n, n ∈ Z
Уравнения с тангенсом и котангенсом можно легко решать по тому же общему принципу решения тригонометрических уравнений. Если, конечно, знаете, как нарисовать тангенс и котангенс на тригонометрическом круге.
В приведённых выше примерах я использовал табличное значение синуса и косинуса: 0,5. Т.е. одно из тех значений, которые ученик знать обязан. А теперь расширим наши возможности на все остальные значения. Решать, так решать!)
Итак, пусть нам надо решить вот такое тригонометрическое уравнение:
Такого значения косинуса в кратких таблицах нет. Хладнокровно игнорируем этот жуткий факт. Рисуем круг, отмечаем на оси косинусов 2/3 и рисуем соответствующие углы. Получаем вот такую картинку.
Разбираемся, для начала, с углом в первой четверти. Знать бы, чему равен икс, сразу бы ответ записали! Не знаем... Провал!? Спокойствие! Математика своих в беде не бросает! Она на этот случай придумала арккосинусы. Не в курсе? Зря. Выясните, Это много проще, чем вы думаете. По этой ссылке ни одного мудрёного заклинания насчёт "обратных тригонометрических функций" нету... Лишнее это в данной теме.
Если вы в курсе, достаточно сказать себе: "Икс - это угол, косинус которого равен 2/3". И сразу, чисто по определению арккосинуса, можно записать:
Вспоминаем про дополнительные обороты и спокойно записываем первую серию корней нашего тригонометрического уравнения:
х 1 = arccos 2/3 + 2π n, n ∈ Z
Практически автоматом записывается и вторая серия корней, для второго угла. Всё то же самое, только икс (arccos 2/3) будет с минусом:
х 2 = - arccos 2/3 + 2π n, n ∈ Z
И все дела! Это правильный ответ. Даже проще, чем с табличными значениями. Ничего вспоминать не надо.) Кстати, самые внимательные заметят, что эта картинка с решением через арккосинус ничем, в сущности, не отличается от картинки для уравнения cosx = 0,5.
Именно так! Общий принцип на то и общий! Я специально нарисовал две почти одинаковые картинки. Круг нам показывает угол х по его косинусу. Табличный это косинус, или нет - кругу неведомо. Что это за угол, π /3, или арккосинус какой - это уж нам решать.
С синусом та же песня. Например:
Вновь рисуем круг, отмечаем синус, равный 1/3, рисуем углы. Получается вот такая картина:
И опять картинка почти та же, что и для уравнения sinx = 0,5. Опять начинаем с угла в первой четверти. Чему равен икс, если его синус равен 1/3 ? Не вопрос!
Вот и готова первая пачка корней:
х 1 = arcsin 1/3 + 2π n, n ∈ Z
Разбираемся со вторым углом. В примере с табличным значением 0,5 он был равен:
π - х
Так и здесь он будет точно такой же! Только икс другой, arcsin 1/3. Ну и что!? Можно смело записывать вторую пачку корней:
х 2 = π - arcsin 1/3 + 2π n, n ∈ Z
Это совершенно правильный ответ. Хотя и выглядит не очень привычно. Зато понятно, надеюсь.)
Вот так решаются тригонометрические уравнения с помощью круга. Этот путь нагляден и понятен. Именно он спасает в тригонометрических уравнениях с отбором корней на заданном интервале, в тригонометрических неравенствах - те вообще решаются практически всегда по кругу. Короче, в любых заданиях, которые чуть сложнее стандартных.
Применим знания на практике?)
Решить тригонометрические уравнения:
Сначала попроще, прямо по этому уроку.
Теперь посложнее.
Подсказка: здесь придётся поразмышлять над кругом. Лично.)
А теперь внешне простенькие... Их ещё частными случаями называют.
sinx = 0
sinx = 1
cosx = 0
cosx = -1
Подсказка: здесь надо сообразить по кругу, где две серии ответов, а где одна... И как вместо двух серий ответов записать одну. Да так, чтобы ни один корень из бесконечного количества не потерялся!)
Ну и совсем простые):
sinx = 0,3
cosx = π
tgx = 1,2
ctgx = 3,7
Подсказка: здесь надо знать, что такое арксинус, арккосинус? Что такое арктангенс, арккотангенс? Самые простые определения. Зато вспоминать никаких табличных значений не надо!)
Ответы, разумеется, в беспорядке):
х 1
= arcsin0,3 + 2π
n, n ∈ Z
х 2
= π
- arcsin0,3 + 2
Не всё получается? Бывает. Прочтите урок ещё раз. Только вдумчиво (есть такое устаревшее слово...) И по ссылкам походите. Главные ссылки - про круг. Без него в тригонометрии - как дорогу переходить с завязанными глазами. Иногда получается.)
Кстати, у меня есть ещё парочка интересных сайтов для Вас.)
Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)
можно познакомиться с функциями и производными.
Требует знания основных формул тригонометрии - сумму квадратов синуса и косинуса, выражение тангенса через синус и косинус и другие. Для тех, кто их забыл или не знает рекомендуем прочитать статью " ".
Итак, основные тригонометрические формулы мы знаем, пришло время использовать их на практике. Решение тригонометрических уравнений
при правильном подходе – довольно увлекательное занятие, как, например, собрать кубик Рубика.
Исходя из самого названия видно, что тригонометрическое уравнение – это уравнение, в котором неизвестное находится под знаком тригонометрической функции.
Существуют так называемые простейшие тригонометрические уравнения. Вот как они выглядят: sinх = а, cos x = a, tg x = a. Рассмотрим, как решить такие тригонометрические уравнения
, для наглядности будем использовать уже знакомый тригонометрический круг.
Любое тригонометрическое уравнение решается в два этапа: приводим уравнение к простейшему виду и далее решаем его, как простейшее тригонометрическое уравнение.
Существует 7 основных методов, с помощью которых решаются тригонометрические уравнения.
Решить уравнение 2cos 2 (x + /6) – 3sin( /3 – x) +1 = 0
Используя формулы приведения получим:
2cos 2 (x + /6) – 3cos(x + /6) +1 = 0
Заменим cos(x + /6) на y для упрощения и получаем обычное квадратное уравнение:
2y 2 – 3y + 1 + 0
Корни которого y 1 = 1, y 2 = 1/2
Теперь идем в обратном порядке
Подставляем найденные значения y и получаем два варианта ответа:
Как решить уравнение sin x + cos x = 1 ?
Перенесем все влево, чтобы справа остался 0:
sin x + cos x – 1 = 0
Воспользуемся вышерассмотренными тождествами для упрощения уравнения:
sin x - 2 sin 2 (x/2) = 0
Делаем разложение на множители:
2sin(x/2) * cos(x/2) - 2 sin 2 (x/2) = 0
2sin(x/2) * = 0
Получаем два уравнения
Уравнение является однородным относительно синуса и косинуса, если все его члены относительно синуса и косинуса одной и той же степени одного и того же угла. Для решения однородного уравнения, поступают следующим образом:
а) переносят все его члены в левую часть;
б) выносят все общие множители за скобки;
в) приравнивают все множители и скобки к 0;
г) в скобках получено однородное уравнение меньшей степени, его в свою очередь делят на синус или косинус в старшей степени;
д) решают полученное уравнение относительно tg.
Решить уравнение 3sin 2 x + 4 sin x cos x + 5 cos 2 x = 2
Воспользуемся формулой sin 2 x + cos 2 x = 1 и избавимся от открытой двойки справа:
3sin 2 x + 4 sin x cos x + 5 cos x = 2sin 2 x + 2cos 2 x
sin 2 x + 4 sin x cos x + 3 cos 2 x = 0
Делим на cos x:
tg 2 x + 4 tg x + 3 = 0
Заменяем tg x на y и получаем квадратное уравнение:
y 2 + 4y +3 = 0, корни которого y 1 =1, y 2 = 3
Отсюда находим два решения исходного уравнения:
x 2 = arctg 3 + k
Решить уравнение 3sin x – 5cos x = 7
Переходим к x/2:
6sin(x/2) * cos(x/2) – 5cos 2 (x/2) + 5sin 2 (x/2) = 7sin 2 (x/2) + 7cos 2 (x/2)
Пререносим все влево:
2sin 2 (x/2) – 6sin(x/2) * cos(x/2) + 12cos 2 (x/2) = 0
Делим на cos(x/2):
tg 2 (x/2) – 3tg(x/2) + 6 = 0
Для рассмотрения возьмем уравнение вида: a sin x + b cos x = c ,
где a, b, c – некоторые произвольные коэффициенты, а x – неизвестное.
Обе части уравнения разделим на :
Теперь коэффициенты уравнения согласно тригонометрическим формулам обладают свойствами sin и cos, а именно: их модуль не более 1 и сумма квадратов = 1. Обозначим их соответственно как cos и sin , где – это и есть так называемый вспомогательный угол. Тогда уравнение примет вид:
cos * sin x + sin * cos x = С
или sin(x + ) = C
Решением этого простейшего тригонометрического уравнения будет
х = (-1) k * arcsin С - + k, где
Следует отметить, что обозначения cos и sin взаимозаменяемые.
Решить уравнение sin 3x – cos 3x = 1
В этом уравнении коэффициенты:
а = , b = -1, поэтому делим обе части на = 2
Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.
Пособия и тренажеры в интернет-магазине "Интеграл" для 10 класса от 1С
Решаем задачи по геометрии. Интерактивные задания на построение в пространстве
Программная среда "1С: Математический конструктор 6.1"
Что будем изучать:
1. Что такое тригонометрические уравнения?
3. Два основных метода решения тригонометрических уравнений.
4. Однородные тригонометрические уравнения.
5. Примеры.
Ребята, мы с вами изучили уже арксинуса, арккосинус, арктангенс и арккотангенс. Теперь давайте посмотрим на тригонометрические уравнения в общем.
Тригонометрические уравнения – уравнения в котором переменная содержится под знаком тригонометрической функции.
Повторим вид решения простейших тригонометрических уравнений:
1)Если |а|≤ 1, то уравнение cos(x) = a имеет решение:
X= ± arccos(a) + 2πk
2) Если |а|≤ 1, то уравнение sin(x) = a имеет решение:
3) Если |а| > 1, то уравнение sin(x) = a и cos(x) = a не имеют решений 4) Уравнение tg(x)=a имеет решение: x=arctg(a)+ πk
5) Уравнение ctg(x)=a имеет решение: x=arcctg(a)+ πk
Для всех формул k- целое число
Решить уравнения: а) sin(3x)= √3/2
Решение:
А) Обозначим 3x=t, тогда наше уравнение перепишем в виде:
Решение этого уравнения будет: t=((-1)^n)arcsin(√3 /2)+ πn.
Из таблицы значений получаем: t=((-1)^n)×π/3+ πn.
Вернемся к нашей переменной: 3x =((-1)^n)×π/3+ πn,
Тогда x= ((-1)^n)×π/9+ πn/3
Ответ: x= ((-1)^n)×π/9+ πn/3, где n-целое число. (-1)^n – минус один в степени n.
Решение:
А) В этот раз перейдем непосредственно к вычислению корней уравнения сразу:
X/5= ± arccos(1) + 2πk. Тогда x/5= πk => x=5πk
Ответ: x=5πk, где k – целое число.
Б) Запишем в виде: 3x- π/3=arctg(√3)+ πk. Мы знаем что: arctg(√3)= π/3
3x- π/3= π/3+ πk => 3x=2π/3 + πk => x=2π/9 + πk/3
Ответ: x=2π/9 + πk/3, где k – целое число.
Решить уравнения: cos(4x)= √2/2. И найти все корни на отрезке .
Решение:
Решим в общем виде наше уравнение: 4x= ± arccos(√2/2) + 2πk
4x= ± π/4 + 2πk;
X= ± π/16+ πk/2;
Теперь давайте посмотрим какие корни попадут на наш отрезок. При k
При k=0, x= π/16, мы попали в заданный отрезок .
При к=1, x= π/16+ π/2=9π/16, опять попали.
При k=2, x= π/16+ π=17π/16, а тут вот уже не попали, а значит при больших k тоже заведомо не будем попадать.
Ответ: x= π/16, x= 9π/16
Решим уравнение:
Решение:
Для решения нашего уравнения воспользуемся методом ввода новой переменной, обозначим: t=tg(x).
В результате замены получим: t 2 + 2t -1 = 0
Найдем корни квадратного уравнения: t=-1 и t=1/3
Тогда tg(x)=-1 и tg(x)=1/3, получили простейшее тригонометрическое уравнение, найдем его корни.
X=arctg(-1) +πk= -π/4+πk; x=arctg(1/3) + πk.
Ответ: x= -π/4+πk; x=arctg(1/3) + πk.
Решить уравнений: 2sin 2 (x) + 3 cos(x) = 0
Решение:
Воспользуемся тождеством: sin 2 (x) + cos 2 (x)=1
Наше уравнение примет вид:2-2cos 2 (x) + 3 cos (x) = 0
2 cos 2 (x) - 3 cos(x) -2 = 0
Введем замену t=cos(x): 2t 2 -3t - 2 = 0
Решением нашего квадратного уравнения являются корни: t=2 и t=-1/2
Тогда cos(x)=2 и cos(x)=-1/2.
Т.к. косинус не может принимать значения больше единицы, то cos(x)=2 не имеет корней.
Для cos(x)=-1/2: x= ± arccos(-1/2) + 2πk; x= ±2π/3 + 2πk
Ответ: x= ±2π/3 + 2πk
Уравнения вида
однородными тригонометрическими уравнениями второй степени.
Для решения однородного тригонометрического уравнения первой степени разделим его на cos(x):
Делить на косинус нельзя если он равен нулю, давайте убедимся что это не так:
Пусть cos(x)=0, тогда asin(x)+0=0 => sin(x)=0, но синус и косинус одновременно не равны нулю, получили противоречие, поэтому можно смело делить на ноль.
Решить уравнение:
Пример: cos 2 (x) + sin(x) cos(x) = 0
Решение:
Вынесем общий множитель: cos(x)(c0s(x) + sin (x)) = 0
Тогда нам надо решить два уравнения:
Cos(x)=0 и cos(x)+sin(x)=0
Cos(x)=0 при x= π/2 + πk;
Рассмотрим уравнение cos(x)+sin(x)=0 Разделим наше уравнение на cos(x):
1+tg(x)=0 => tg(x)=-1 => x=arctg(-1) +πk= -π/4+πk
Ответ: x= π/2 + πk и x= -π/4+πk
Как решать однородные тригонометрические уравнения второй степени?
Ребята, придерживайтесь этих правил всегда!
1. Посмотреть чему равен коэффициент а, если а=0 то тогда наше уравнение примет вид cos(x)(bsin(x)+ccos(x)), пример решения которого на предыдущем слайде
2. Если a≠0, то нужно поделить обе части уравнения на косинус в квадрате, получим:
Делаем замену переменной t=tg(x) получаем уравнение:
Разделим обе части уравнения на косинус квадрат:
Делаем замену переменной t=tg(x): t 2 + 2 t - 3 = 0
Найдем корни квадратного уравнения: t=-3 и t=1
Тогда: tg(x)=-3 => x=arctg(-3) + πk=-arctg(3) + πk
Tg(x)=1 => x= π/4+ πk
Ответ: x=-arctg(3) + πk и x= π/4+ πk
Решение:
Преобразуем наше выражение:
Решать такие уравнение мы умеем: x= - π/4 + 2πk и x=5π/4 + 2πk
Ответ: x= - π/4 + 2πk и x=5π/4 + 2πk
Решение:
Преобразуем наше выражение:
Введем замену tg(2x)=t:2 2 - 5t + 2 = 0
Решением нашего квадратного уравнения будут корни: t=-2 и t=1/2
Тогда получаем: tg(2x)=-2 и tg(2x)=1/2
2x=-arctg(2)+ πk => x=-arctg(2)/2 + πk/2
2x= arctg(1/2) + πk => x=arctg(1/2)/2+ πk/2
Ответ: x=-arctg(2)/2 + πk/2 и x=arctg(1/2)/2+ πk/2
А) sin(7x)= 1/2 б) cos(3x)= √3/2 в) cos(-x) = -1 г) tg(4x) = √3 д) ctg(0.5x) = -1.7
2) Решить уравнения: sin(3x)= √3/2. И найти все корни на отрезке [π/2; π ].
3) Решить уравнение: ctg 2 (x) + 2ctg(x) + 1 =0
4) Решить уравнение: 3 sin 2 (x) + √3sin (x) cos(x) = 0
5) Решить уравнение:3sin 2 (3x) + 10 sin(3x)cos(3x) + 3 cos 2 (3x) =0
6)Решить уравнение:cos 2 (2x) -1 - cos(x) =√3/2 -sin 2 (2x)
Статьи по теме: | |
Отделы водорослей К какому царству относятся сине зеленые водоросли
Среди существующих ныне организмов встречаются такие, о принадлежности... Что такое система вообще
В силу того, что системный анализ направлен на решение любых проблем... Курс выживания в дикой природе Подмосковья: как это было
В мае 2012 года в средствах массовой информации появилась информация о... |